METAL NANOCLUSTERS DEPOSITION USING MAGNETRON SPUTTERING
https://doi.org/10.56304/S2079562925010038
EDN: KNHPFG
Abstract
In the present work several series of thin tantalum nanocluster films deposited on a quartz crystal were obtained, and their masses were measured using a quartz mass sensor. In each series the films had a characteristic particle size from 1.5 to 6.5 nm. The result of the mass measurement showed that the ratio of the deposited mass to the incident volume of clusters differs for different sizes. A physical model of the particle deposition process was also proposed and studied to explain the observed effect. According to the simulation results, it turned out that the focusing of particles practically does not change with size, and also is very weakly dependent on the initial velocity of the particles. It was concluded that the main reason for the above-described effect may be the difference in the adhesion coefficient of particles of different sizes. It has been proposed to test this assumption through additional experiments.
About the Authors
D. V. BortkoRussian Federation
K. M. Balakhnev
Russian Federation
V. A. Shilov
Russian Federation
P. V. Borisyuk
Russian Federation
O. S. Vasilyev
Russian Federation
Yu. Yu. Lebedinskii
Russian Federation
References
1. Rawat K., Goyal M. // Mater. Today Proc. 2021. V. 42. P. 1633.
2. Choi B. et al. // Nanotechnology. 2007. V. 18 (7). P. 075706.
3. Bhatt S., Kumar M. // J. Phys. Chem. Solids. 2017. V. 106. P. 112.
4. Rawat K., Goyal M. // Mater. Today Proc. 2023. V. 81. P. 1132.
5. Chhabra H., Kumar M. // J. Phys. Chem. Solids. 2019. V. 135. P. 109075.
6. Pabari C. // Mater. Today Proc. 2022. V. 55. P. 98.
7. Maldonado A.S., et al. // J. Mol. Graph. Model. 2023. V. 121. P. 108445.
8. Bhagowati P., et al. // Comput. Mater. Sci. 2023. V. 220. P. 112060.
9. Sharma S., Singh J.P. // Phys. Open. 2024. V. 19. P. 100215.
10. Shoeb M. et al. // J. Phys. Chem. Solids. 2024. V. 184. P. 111707.
11. Borisyuk P.V. et al. // Mater. Lett. 2021. V. 286. P. 129204.
12. Borisyuk P.V. et al. // Chem. Phys. 2016. V. 478. P. 2.
13. Pleskunov P. et al. // Appl. Surf. Sci. 2021. V. 559. P. 149974.
14. Meng C. et al. // Energy. 2022. V. 239. P. 121884.
15. Yalcin R.A. et al. // J. Quant. Spectrosc. Radiat. Transf. 2024. V. 312. P. 108797.
16. Бортко Д.В. и др. // Ядерн. физ. инжинир. 2023. Т. 14 (2). С. 194. [Bortko D.V. et al. // Phys. At. Nucl. 2022. V. 85 (12). P. 2115].
17. Singh V. et al. // J. Nanopart. Res. 2014. V. 16. P. 1
Review
For citations:
Bortko D.V., Balakhnev K.M., Shilov V.A., Borisyuk P.V., Vasilyev O.S., Lebedinskii Yu.Yu. METAL NANOCLUSTERS DEPOSITION USING MAGNETRON SPUTTERING. Nuclear Physics and Engineering. 2025;16(5):740-746. (In Russ.) https://doi.org/10.56304/S2079562925010038. EDN: KNHPFG
JATS XML