Preview

Nuclear Physics and Engineering

Advanced search

WHAT IS THE THICKNESS OF THE ICE MELTING FRONT?

https://doi.org/10.56304/S2079562924060411

EDN: QIMZCE

Abstract

the melting front thickness of ice has been estimated from the measured kinetics of the melting of ice balls in air at room temperature (≈22°C) and in cooled water (1°C) taking into account the temperature of the ice ball surface and the bulk temperature inside the balls. In both cases, the input heat is absorbed by ice in the form of the latent melting heat within the layer called the melting front. To describe the kinetics of the ice ball melting, we have developed a model with allowance for the heat transfer through the entire surface of the ice ball, which decreases during melting. The measured temperatures of the ice surface and the temperature inside the balls are approximately 0.4 and 0°C, respectively. The ice melting kinetics in cold water has been determined by means of the continuous measurement of the weight of the submerged ice ball (containing a lead ball frozen inside) as a function of time. In both cases (melting in air and water), the thickness of the ice melting front estimated from the fit the proposed model of experimental data is approximately 3 mm.

About the Authors

I. S. Stepanov
National Research Centre “Kurchatov Institute”
Russian Federation


L. I. Budaeva
National Research Centre “Kurchatov Institute”
Russian Federation


O. A. Raznitsyn
National Research Centre “Kurchatov Institute”
Russian Federation


M. V. Karpov
National Research Centre “Kurchatov Institute”
Russian Federation


S. V. Stepanov
National Research Centre “Kurchatov Institute”
Russian Federation


References

1. Ubbelohde A.R. Melting and Crystal structure. 1965. London: Oxford Univ. Press.

2. Mazur P. “Life in the Frozen State” Principals of Cryobiology. Fuller B.J., N. Lane, Benson E.E. (Eds.). 2004. Boca Raton: CRC Press. https://doi.org/10.1201/9780203647073

3. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. 1963. New York: Pergamon Press.

4. Dash J.G., Rempel A.W., Wettlaufer J.S. // Rev. Mod. Phys. 2006. V. 78. P. 695. https://doi.org/10.1103/RevModPhys.78.695

5. Stepanov I.S., Budaeva L.I., Stepanov S.V. // Colloid J. 2024. V. 86 (3). P. 488.

6. Bartels-Rausch T. // Nature. 2013. V. 494. P. 27. https://doi.org/10.1038/494027a

7. Maeno N. The Science of Ice. 1981. Sapporo: Hokkaido Univ. Press.

8. Fletcher N.H. // Philos. Mag. 1968. V. 18 (156). P. 1287. https://doi.org/10.1080/14786436808227758

9. Dzyaloshinskii I.E., Lifshitz E.M., Pitaevskii L.P. // Adv. Phys. 1961. V. 10. P. 165. https://doi.org/10.1080/00018736100101281

10. Wei W., Xiao S., Ni J. // Mol. Simul. 2010. V. 36 (11). P. 823. https://doi.org/10.1080/08927021003774287

11. Fitzner M., Sosso G.C., Cox S.J., Michaelides A. // Proc. Natl. Acad. Sci. USA. 2019. V. 116 (6). P. 2009. www.pnas.org/cgi/doi/10.1073/pnas.1817135116

12. Mukherjee S., Bagchi B. // J. Phys. Chem. C. 2020. V. 124. P. 7334. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02030

13. Mizuno Y., Hanafusa N. // Le J. Phys. Colloq. 1987. V. 48. P. C1-511. https://doi.org/10.1051/jphyscol:1987170

14. Kvlividze V.I., Kiselev V.F., Kurzaev A.B., Ushakova L.A. // Surf. Sci. 1974. V. 44. P. 60.

15. Asay D.B., Kim S.H. // J. Phys. Chem. B. 2005. V. 109 (35). P. 16760. https://doi.org/10.1021/jp053042o

16. Huang C., Wikfeldt K.T., Tokushima T., Nordlund D., Harada Y., Bergmann U., Niebuhr M., Weiss T.M., Horikawa Y., Leetmaa M., Ljungberg M.P., Takahashi O., Lenz A., Ojamae L., Lyubartsev A.P., Shin S., Pettersson L.G.M., Nilsson A. // Proc. Natl. Acad. Sci. USA. 2009. V. 106 (36). P. 15214. www.pnas.orgcgidoi10.1073pnas.0904743106.

17. Zemskaya L.I., Ilyukhina O.V., Karpov M.V., Stepanov S.V. // Phys. Wave Phenom. 2023. V. 31. P. 105. https://doi.org/10.3103/s1541308x23020115

18. Monserrat B., Brandenburg J.G., Engel E.A., Cheng B. // Nat. Commun. 2020. V. 11. P. 5757. https://doi.org/10.1038/s41467-020-19606-y


Review

For citations:


Stepanov I.S., Budaeva L.I., Raznitsyn O.A., Karpov M.V., Stepanov S.V. WHAT IS THE THICKNESS OF THE ICE MELTING FRONT? Nuclear Physics and Engineering. 2025;16(4):548-558. (In Russ.) https://doi.org/10.56304/S2079562924060411. EDN: QIMZCE

Views: 19

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)