WHAT IS THE THICKNESS OF THE ICE MELTING FRONT?
https://doi.org/10.56304/S2079562924060411
EDN: QIMZCE
Abstract
the melting front thickness of ice has been estimated from the measured kinetics of the melting of ice balls in air at room temperature (≈22°C) and in cooled water (≲1°C) taking into account the temperature of the ice ball surface and the bulk temperature inside the balls. In both cases, the input heat is absorbed by ice in the form of the latent melting heat within the layer called the melting front. To describe the kinetics of the ice ball melting, we have developed a model with allowance for the heat transfer through the entire surface of the ice ball, which decreases during melting. The measured temperatures of the ice surface and the temperature inside the balls are approximately 0.4 and 0°C, respectively. The ice melting kinetics in cold water has been determined by means of the continuous measurement of the weight of the submerged ice ball (containing a lead ball frozen inside) as a function of time. In both cases (melting in air and water), the thickness of the ice melting front estimated from the fit the proposed model of experimental data is approximately 3 mm.
About the Authors
I. S. StepanovRussian Federation
L. I. Budaeva
Russian Federation
O. A. Raznitsyn
Russian Federation
M. V. Karpov
Russian Federation
S. V. Stepanov
Russian Federation
References
1. Ubbelohde A.R. Melting and Crystal structure. 1965. London: Oxford Univ. Press.
2. Mazur P. “Life in the Frozen State” Principals of Cryobiology. Fuller B.J., N. Lane, Benson E.E. (Eds.). 2004. Boca Raton: CRC Press. https://doi.org/10.1201/9780203647073
3. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. 1963. New York: Pergamon Press.
4. Dash J.G., Rempel A.W., Wettlaufer J.S. // Rev. Mod. Phys. 2006. V. 78. P. 695. https://doi.org/10.1103/RevModPhys.78.695
5. Stepanov I.S., Budaeva L.I., Stepanov S.V. // Colloid J. 2024. V. 86 (3). P. 488.
6. Bartels-Rausch T. // Nature. 2013. V. 494. P. 27. https://doi.org/10.1038/494027a
7. Maeno N. The Science of Ice. 1981. Sapporo: Hokkaido Univ. Press.
8. Fletcher N.H. // Philos. Mag. 1968. V. 18 (156). P. 1287. https://doi.org/10.1080/14786436808227758
9. Dzyaloshinskii I.E., Lifshitz E.M., Pitaevskii L.P. // Adv. Phys. 1961. V. 10. P. 165. https://doi.org/10.1080/00018736100101281
10. Wei W., Xiao S., Ni J. // Mol. Simul. 2010. V. 36 (11). P. 823. https://doi.org/10.1080/08927021003774287
11. Fitzner M., Sosso G.C., Cox S.J., Michaelides A. // Proc. Natl. Acad. Sci. USA. 2019. V. 116 (6). P. 2009. www.pnas.org/cgi/doi/10.1073/pnas.1817135116
12. Mukherjee S., Bagchi B. // J. Phys. Chem. C. 2020. V. 124. P. 7334. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02030
13. Mizuno Y., Hanafusa N. // Le J. Phys. Colloq. 1987. V. 48. P. C1-511. https://doi.org/10.1051/jphyscol:1987170
14. Kvlividze V.I., Kiselev V.F., Kurzaev A.B., Ushakova L.A. // Surf. Sci. 1974. V. 44. P. 60.
15. Asay D.B., Kim S.H. // J. Phys. Chem. B. 2005. V. 109 (35). P. 16760. https://doi.org/10.1021/jp053042o
16. Huang C., Wikfeldt K.T., Tokushima T., Nordlund D., Harada Y., Bergmann U., Niebuhr M., Weiss T.M., Horikawa Y., Leetmaa M., Ljungberg M.P., Takahashi O., Lenz A., Ojamae L., Lyubartsev A.P., Shin S., Pettersson L.G.M., Nilsson A. // Proc. Natl. Acad. Sci. USA. 2009. V. 106 (36). P. 15214. www.pnas.orgcgidoi10.1073pnas.0904743106.
17. Zemskaya L.I., Ilyukhina O.V., Karpov M.V., Stepanov S.V. // Phys. Wave Phenom. 2023. V. 31. P. 105. https://doi.org/10.3103/s1541308x23020115
18. Monserrat B., Brandenburg J.G., Engel E.A., Cheng B. // Nat. Commun. 2020. V. 11. P. 5757. https://doi.org/10.1038/s41467-020-19606-y
Review
For citations:
Stepanov I.S., Budaeva L.I., Raznitsyn O.A., Karpov M.V., Stepanov S.V. WHAT IS THE THICKNESS OF THE ICE MELTING FRONT? Nuclear Physics and Engineering. 2025;16(4):548-558. (In Russ.) https://doi.org/10.56304/S2079562924060411. EDN: QIMZCE
JATS XML