ANALYSIS OF CRATERS IN TUNGSTEN FILMS IRRADIATED WITH PICOSECOND LASER PULSES FOR LASER-ASSISTED SURFACE DIAGNOSTICS
https://doi.org/10.56304/S2079562925020010
EDN: BYKAYW
Abstract
In this work, the profiles of craters obtained by the irradiation of a picosecond laser with a wavelength of 1064 nm and energy density in the range of 0.4–7.0 J/cm2 of tungsten films were measured using energy-dispersive X-ray spectroscopy, as well as a contact profilometry. The presence of several mechanisms of surface erosion at given irradiation parameters is shown. The influence of the craters shape on the signal of laser-assisted quadrupole mass spectrometry during irradiation of deuterium-containing tungsten films is analyzed.
About the Authors
N. E. EfimovRussian Federation
D. N. Sinelnikov
Russian Federation
M. V. Grishaev
Russian Federation
Yu. M. Gasparyan
Russian Federation
S. A. Krat
Russian Federation
I. A. Sorokin
Russian Federation
References
1. Osticioli I., Mendes N.F.C., Porcinai S., Cagnini A., Castellucci E. // Anal. Bioanal. Chem. 2009. V. 394 (4). P. 1033–1041. https://doi.org/10.1007/s00216-009-2653-8
2. Moncayo S., Rosales J.D., Izquierdo-Hornillos R., Anzano J., Caceres J.O. // Talanta. 2016. V. 158. P. 185–191. https://doi.org/10.1016/j.talanta.2016.05.059
3. Asquini C.P. Laser Induced Breakdown Spectroscopy (LIBS). Handbook of Solid-State Lasers: Materials, Systems and Applications. 2013. P. 551–571. https://doi.org/10.1533/9780857097507.2.551
4. Ge M.-C. et al. // J. Microbiol. Immun. Infect. 2017. V. 50 (5). P. 662–668. https://doi.org/10.1016/j.jmii.2016.06.002
5. Philipps V. et al. // Nucl. Fusion. 2013. V. 53 (9). P. 93002–93014. https://doi.org/10.1088/0029-5515/53/9/093002
6. Van Der Meiden H.J. et al. // J. Instrum. 2013. V. 8 (11). https://doi.org/10.1088/1748-0221/8/11/C11011
7. Efimov N.E., Sinelnikov D.N., Bulgadaryan D.G., Gasparyan Y.M., Vovchenko E.D., Krat S.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86 (5). P. 532–535. https://doi.org/10.3103/S1062873822050057
8. Razdobarin A.G. et al. // Plasma Phys. Rep. 2024. V. 50 (6). P. 667–677. https://doi.org/10.1134/S1063780X24600853
9. Gasparyan Y. et al. // Fusion Eng. Des. 2021. V. 172. P. 112882. https://doi.org/10.1016/j.fusengdes.2021.112882
10. Malaquias A. et al. // J. Nucl. Mater. 2013. V. 438. P. S936–S939. https://doi.org/10.1016/j.jnucmat.2013.01.203
11. Wu C., Zhigilei L.V. // Appl. Phys. A. 2014. V. 114 (1). P. 11–32. https://doi.org/10.1007/s00339-013-8086-4
12. Papernov S., Schmid A.W. // J. Appl. Phys. 2005. V. 97 (11). P. 114906. https://doi.org/10.1063/1.1924878
13. Inogamov N.A., Petrov Yu.V., Khokhlov V.A., Zhakhovskii V.V. // High Temp. 2020. V. 58 (4). P. 632–646. https://doi.org/10.1134/S0018151X20040045
14. Bishop H.E., Poole D.M. // J. Phys. D. 1973. V. 6 (9). P. 1142–1158. https://doi.org/10.1088/0022-3727/6/9/318
15. Sorokin I.A., Kolodko D.V. // Thin Solid Films. 2021. V. 737. P. 138937. https://doi.org/10.1016/j.tsf.2021.138937
16. Sorokin I.A., Kolodko D.V. // Vacuum. 2023. V. 207. P. 111570. https://doi.org/10.1016/j.vacuum.2022.111570
17. Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., de Jonge N., Drouin D. // Scanning. 2011. V. 33 (3). P. 135–146. https://doi.org/10.1002/sca.20262
18. Paris P., Butikova J., Laan M., Hakola A., Jõgi I., Likonen J., Grigore E., Ruset C. // Nucl. Mater. Energy. 2019. V. 18. P. 1–5. https://doi.org/10.1016/j.nme.2018.11.018
19. Struleva E., Ashitkov S., Komarov P. // High Temp. 2018. V. 56 (5). P. 696–701. https://doi.org/10.31857/S004036440003357-6
20. Ionin A.A., Kudryashov S.I., Samokhin A.A. // Phys. Usp. 2017. V. 60 (2). P. 149–160. https://doi.org/10.3367/UFNe.2016.09.037974
21. Sokolowski-Tinten K., Bialkowski J., Cavalleri A., von der Linde D., Oparin A., Meyer-ter-Vehn J., Anisimov S.I. // Phys. Rev. Lett. 1998. V. 81 (1). P. 224–227. https://doi.org/10.1103/PhysRevLett.81.224
22. Artyukov I.A., Zayarniy D.A., Ionin A.A., Kudryashov S.I., Makarov S.V., Saltuganov P.N. // JETP Lett. 2014. V. 99 (1). P. 51–55. https://doi.org/10.1134/S0021364014010020
23. Ionin A.A., Kudryashov S.I., Seleznev L.V., Sinitsyn D.V., Bunkin A.F., Lednev V.N., Pershin S.M. // J. Exp. Theor. Phys. 2013. V. 116 (3). P. 347–362. https://doi.org/10.1134/S106377611302012X
24. Wang X.Y., Downer M.C. // Opt. Lett. 1992. V. 17 (20). P. 1450. https://doi.org/10.1364/OL.17.001450
25. Petrović S., Gaković B., Peruško D., Desai T., Batani D., Čekada M., Radak B., Trtica M. // Laser Phys. 2009. V. 19 (8). P. 1844–1849. https://doi.org/10.1134/S1054660X09150353
26. Zheng B., Jiang G., Wang W., Mei X., Wang F. // Opt. Laser Tech. 2017. V. 94. P. 267–278. https://doi.org/10.1016/j.optlastec.2017.02.003
27. Razdobarin A.G. et al. // Plasma Phys. 2022. V. 48 (12). P. 1216–1232. https://doi.org/10.31857/S0367292122100249
28. Ефимов Н.Е., Синельников Д.Н., Гришаев М.В., Гаспарян Ю.М., Ефимов В.С., Крат С.А. // Ядерная физика и инжиниринг. 2024. Т. 15 (4). С. 324–331. [Efimov N.E., Sinelnikov D.N., Grishaev M.V., Gasparyan Y.M., Efimov V.S., Krat S.A. // Phys. At. Nucl. 2023. V. 86 (10). P. 2173–2179 https://doi.org/10.1134/S1063778823100137]. https://doi.org/10.56304/S2079562923030120
29. Krat S.A., Popkov A.S., Gasparyan Y.M., Vasina Y.A., Prishvitsyn A.S., Pisarev A.A. // J. Instrum. 2020. V. 15 (1). P. P01011–P01011. https://doi.org/10.1088/1748-0221/15/01/P01011
Review
For citations:
Efimov N.E., Sinelnikov D.N., Grishaev M.V., Gasparyan Yu.M., Krat S.A., Sorokin I.A. ANALYSIS OF CRATERS IN TUNGSTEN FILMS IRRADIATED WITH PICOSECOND LASER PULSES FOR LASER-ASSISTED SURFACE DIAGNOSTICS. Nuclear Physics and Engineering. 2025;16(2):213-221. (In Russ.) https://doi.org/10.56304/S2079562925020010. EDN: BYKAYW