Preview

Nuclear Physics and Engineering

Advanced search

ANALYSIS OF CRATERS IN TUNGSTEN FILMS IRRADIATED WITH PICOSECOND LASER PULSES FOR LASER-ASSISTED SURFACE DIAGNOSTICS

https://doi.org/10.56304/S2079562925020010

EDN: BYKAYW

Abstract

In this work, the profiles of craters obtained by the irradiation of a picosecond laser with a wavelength of 1064 nm and energy density in the range of 0.4–7.0 J/cm2 of tungsten films were measured using energy-dispersive X-ray spectroscopy, as well as a contact profilometry. The presence of several mechanisms of surface erosion at given irradiation parameters is shown. The influence of the craters shape on the signal of laser-assisted quadrupole mass spectrometry during irradiation of deuterium-containing tungsten films is analyzed.

About the Authors

N. E. Efimov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Saint Petersburg State University
Russian Federation


D. N. Sinelnikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


M. V. Grishaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Saint Petersburg State University
Russian Federation


Yu. M. Gasparyan
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Saint Petersburg State University
Russian Federation


S. A. Krat
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. A. Sorokin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences
Russian Federation


References

1. Osticioli I., Mendes N.F.C., Porcinai S., Cagnini A., Castellucci E. // Anal. Bioanal. Chem. 2009. V. 394 (4). P. 1033–1041. https://doi.org/10.1007/s00216-009-2653-8

2. Moncayo S., Rosales J.D., Izquierdo-Hornillos R., Anzano J., Caceres J.O. // Talanta. 2016. V. 158. P. 185–191. https://doi.org/10.1016/j.talanta.2016.05.059

3. Asquini C.P. Laser Induced Breakdown Spectroscopy (LIBS). Handbook of Solid-State Lasers: Materials, Systems and Applications. 2013. P. 551–571. https://doi.org/10.1533/9780857097507.2.551

4. Ge M.-C. et al. // J. Microbiol. Immun. Infect. 2017. V. 50 (5). P. 662–668. https://doi.org/10.1016/j.jmii.2016.06.002

5. Philipps V. et al. // Nucl. Fusion. 2013. V. 53 (9). P. 93002–93014. https://doi.org/10.1088/0029-5515/53/9/093002

6. Van Der Meiden H.J. et al. // J. Instrum. 2013. V. 8 (11). https://doi.org/10.1088/1748-0221/8/11/C11011

7. Efimov N.E., Sinelnikov D.N., Bulgadaryan D.G., Gasparyan Y.M., Vovchenko E.D., Krat S.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86 (5). P. 532–535. https://doi.org/10.3103/S1062873822050057

8. Razdobarin A.G. et al. // Plasma Phys. Rep. 2024. V. 50 (6). P. 667–677. https://doi.org/10.1134/S1063780X24600853

9. Gasparyan Y. et al. // Fusion Eng. Des. 2021. V. 172. P. 112882. https://doi.org/10.1016/j.fusengdes.2021.112882

10. Malaquias A. et al. // J. Nucl. Mater. 2013. V. 438. P. S936–S939. https://doi.org/10.1016/j.jnucmat.2013.01.203

11. Wu C., Zhigilei L.V. // Appl. Phys. A. 2014. V. 114 (1). P. 11–32. https://doi.org/10.1007/s00339-013-8086-4

12. Papernov S., Schmid A.W. // J. Appl. Phys. 2005. V. 97 (11). P. 114906. https://doi.org/10.1063/1.1924878

13. Inogamov N.A., Petrov Yu.V., Khokhlov V.A., Zhakhovskii V.V. // High Temp. 2020. V. 58 (4). P. 632–646. https://doi.org/10.1134/S0018151X20040045

14. Bishop H.E., Poole D.M. // J. Phys. D. 1973. V. 6 (9). P. 1142–1158. https://doi.org/10.1088/0022-3727/6/9/318

15. Sorokin I.A., Kolodko D.V. // Thin Solid Films. 2021. V. 737. P. 138937. https://doi.org/10.1016/j.tsf.2021.138937

16. Sorokin I.A., Kolodko D.V. // Vacuum. 2023. V. 207. P. 111570. https://doi.org/10.1016/j.vacuum.2022.111570

17. Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., de Jonge N., Drouin D. // Scanning. 2011. V. 33 (3). P. 135–146. https://doi.org/10.1002/sca.20262

18. Paris P., Butikova J., Laan M., Hakola A., Jõgi I., Likonen J., Grigore E., Ruset C. // Nucl. Mater. Energy. 2019. V. 18. P. 1–5. https://doi.org/10.1016/j.nme.2018.11.018

19. Struleva E., Ashitkov S., Komarov P. // High Temp. 2018. V. 56 (5). P. 696–701. https://doi.org/10.31857/S004036440003357-6

20. Ionin A.A., Kudryashov S.I., Samokhin A.A. // Phys. Usp. 2017. V. 60 (2). P. 149–160. https://doi.org/10.3367/UFNe.2016.09.037974

21. Sokolowski-Tinten K., Bialkowski J., Cavalleri A., von der Linde D., Oparin A., Meyer-ter-Vehn J., Anisimov S.I. // Phys. Rev. Lett. 1998. V. 81 (1). P. 224–227. https://doi.org/10.1103/PhysRevLett.81.224

22. Artyukov I.A., Zayarniy D.A., Ionin A.A., Kudryashov S.I., Makarov S.V., Saltuganov P.N. // JETP Lett. 2014. V. 99 (1). P. 51–55. https://doi.org/10.1134/S0021364014010020

23. Ionin A.A., Kudryashov S.I., Seleznev L.V., Sinitsyn D.V., Bunkin A.F., Lednev V.N., Pershin S.M. // J. Exp. Theor. Phys. 2013. V. 116 (3). P. 347–362. https://doi.org/10.1134/S106377611302012X

24. Wang X.Y., Downer M.C. // Opt. Lett. 1992. V. 17 (20). P. 1450. https://doi.org/10.1364/OL.17.001450

25. Petrović S., Gaković B., Peruško D., Desai T., Batani D., Čekada M., Radak B., Trtica M. // Laser Phys. 2009. V. 19 (8). P. 1844–1849. https://doi.org/10.1134/S1054660X09150353

26. Zheng B., Jiang G., Wang W., Mei X., Wang F. // Opt. Laser Tech. 2017. V. 94. P. 267–278. https://doi.org/10.1016/j.optlastec.2017.02.003

27. Razdobarin A.G. et al. // Plasma Phys. 2022. V. 48 (12). P. 1216–1232. https://doi.org/10.31857/S0367292122100249

28. Ефимов Н.Е., Синельников Д.Н., Гришаев М.В., Гаспарян Ю.М., Ефимов В.С., Крат С.А. // Ядерная физика и инжиниринг. 2024. Т. 15 (4). С. 324–331. [Efimov N.E., Sinelnikov D.N., Grishaev M.V., Gasparyan Y.M., Efimov V.S., Krat S.A. // Phys. At. Nucl. 2023. V. 86 (10). P. 2173–2179 https://doi.org/10.1134/S1063778823100137]. https://doi.org/10.56304/S2079562923030120

29. Krat S.A., Popkov A.S., Gasparyan Y.M., Vasina Y.A., Prishvitsyn A.S., Pisarev A.A. // J. Instrum. 2020. V. 15 (1). P. P01011–P01011. https://doi.org/10.1088/1748-0221/15/01/P01011


Review

For citations:


Efimov N.E., Sinelnikov D.N., Grishaev M.V., Gasparyan Yu.M., Krat S.A., Sorokin I.A. ANALYSIS OF CRATERS IN TUNGSTEN FILMS IRRADIATED WITH PICOSECOND LASER PULSES FOR LASER-ASSISTED SURFACE DIAGNOSTICS. Nuclear Physics and Engineering. 2025;16(2):213-221. (In Russ.) https://doi.org/10.56304/S2079562925020010. EDN: BYKAYW

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)