Preview

Nuclear Physics and Engineering

Advanced search

GRAVITY-INERTIAL LASER DETECTOR OF ASTRO-GEOPHYSICAL DISTURBANCES IN THE UNDERGROUND LABORATORY OF THE BNO INR RAS

https://doi.org/10.56304/S2079562924060356

EDN: RLACTK

Abstract

The design of a large ring laser gyroscope with the record sensitivity to variations in the rotation speed and angular inclinations of the laboratory base surface, as well as to the rotational asymmetry of the refractive index of the optical medium, including vacuum is presented. Such an instrument placed in an underground observatory will allow one to obtain information relevant to particle physics, quantum field theory, laser physics, astrometry, global geodynamics, and seismology. In addition, it can be applied to forecast global cataclysms such as earthquakes. As a practical step to support the project, the results of trial experiments with a small-sized laser gyroscope (LG) are presented.

About the Authors

K. V. Rudenko
Moscow State University
Russian Federation


S. I. Oreshkin
Sternberg Astronomical Institute, Moscow State University
Russian Federation


S. M. Popov
Sternberg Astronomical Institute, Moscow State University
Russian Federation


V. N. Rudenko
Sternberg Astronomical Institute, Moscow State University
Russian Federation


V. V. Azarova
Stelmakh Research Institute POLYUS
Russian Federation


Yu. D. Golyaev
Stelmakh Research Institute POLYUS
Russian Federation


I. I. Savelyev
Stelmakh Research Institute POLYUS
Russian Federation


A. G. Shuraev
Stelmakh Research Institute POLYUS
Russian Federation


References

1. Rudenko V.N., Oreshkin S.I., Rudenko K.V. // Phys. Usp. 2022. V. 65. P. 920–951.

2. http://www2.phys.canterbury.ac.nz/~physrin/content/about_us.php

3. Rowe C.H. et al. // Appl. Opt. 1999. V. 38. P. 2516.

4. http://web2.infn.it/GINGER/index.php/it/

5. Santagata R. et al. // Class. Quantum Grav. 2015. V. 32. P. 055013.

6. Igel H. et al. // Geophys. J. Int. 2007. V. 168. P. 182.

7. Igel H. et al. // Geophys. Res. Lett. 2011. V. 38. P. L21303.

8. Ciufolini I., Pavlis C. // Nature. 2004. V. 431. P. 958.

9. Schiff L.I. // Proc. Natl. Acad. Sci. USA. 1960. V. 46. P. 871.

10. Lense J., Thirring H. // Phys. Z. 1918. V. 19. P. 156.

11. Everitt C.W.F. et al. // Phys. Rev. Lett. 2011. V. 106. P. 2211014.

12. Peccei R.D., Quinn H.R. // Phys. Rev. D. 1977. V. 16. P. 1791.

13. Sikivie P. // Phys. Rev. D. 1985. V. 32. P. 2988.

14. Azarova V.V. et al. // Quantum Electron. 2000. V. 30 (2). P. 96.

15. Azarova V.V. et al. // Quantum Electron. 2015. V. 45 (2). P. 171.

16. Kolbas Yu.Yu. et al. // Quantum Electron. 2015. V. 45 (6). P. 573.


Review

For citations:


Rudenko K.V., Oreshkin S.I., Popov S.M., Rudenko V.N., Azarova V.V., Golyaev Yu.D., Savelyev I.I., Shuraev A.G. GRAVITY-INERTIAL LASER DETECTOR OF ASTRO-GEOPHYSICAL DISTURBANCES IN THE UNDERGROUND LABORATORY OF THE BNO INR RAS. Nuclear Physics and Engineering. 2024;15(6):599-606. (In Russ.) https://doi.org/10.56304/S2079562924060356. EDN: RLACTK

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)