Synthesis of Multilayer Nanostructures Hf–Ti–N from the Plasma Phase
https://doi.org/10.56304/S2079562923030181
EDN: BJUSYG
Abstract
The paper presents characteristics of the condensation process of nitride coatings from the plasma phase with ion bombardment (Arc-PVD) using three electrode arc evaporators of titanium and hafnium onto metallic and collagen substrates. The calculated linear deposition rate of titanium nitride coating ranged from 4.44 to 4.95 μm/h at an arc evaporator current of 65 A. The growth rate of hafnium nitride coating at an arc evaporator current of 75 A ranged from 0.72 to 0.82 μm/h with a confidence probability of 0.9. When condensing nitrides from two hafnium evaporators, the coating growth rate was 1.65 nm/s. The strength of the natural protein fibrous material with hafnium nitride coating remained unchanged at 10–2 MPa, and there was no alteration in pore size and vapor permeability. Based on a welding temperature of 100°C, the nanostructure of collagen remained stable. The nanostructure of the condensates represents a multi-layer composition with layer thicknesses of 5–2 nm. Nitride condensates on collagen form as scale-like structures, as well as threads with a diameter of 30 nm and lengths up to 5 μm. High corrosion resistance and hardness have been established, recommending the produced material for reducing the aseptic instability of metallic medical implants in endoprosthetics.
About the Authors
M. M. GrebenshchikovaRussian Federation
M. M. Mironov
Russian Federation
References
1. Лясников В.Н., Лясникова А.В., Дударева О.А. Плазменное напыление. 2016. Саратов: СГТУ им. Гагарина.
2. Дарковский Ю.В., Матлахов В.П. // СТИН. 2006. № 12. С. 17.
3. Абдуллин И.Ш., Миронов М.М., Васильев И.И. // Вестник Казан. технол. ун-та. 2012. № 20. С. 29.
4. Mironov M.M., Grebenshchikova M.M., Mironova E.A. // J. Phys.: Conf. Ser. 2021. V. 1923 (1). P. 012005.
5. Geng D., Li H., Chen Z., Xu Y.X., Wang Q. // J. Mater. Sci. Technol. 2022. V. 100. C. 150.
6. Оура К., Лифшиц В.Г., Саранин А.А. и др. Введение в физику поверхности. 2006. Москва: Наука.
7. Беграмбеков Л.Б. Процессы в твердом теле под действием ионного и плазменного облучения. 2008. Москва: МИФИ.
8. Кунченко Ю.В., Кунченко В.В. // ФИП. 2005. Т. 3 (3-4). С. 199.
9. Клесников Д.А. и др. // ФИП PSE. 2012. V.
10. (1). 10. Voznesensky E.F. et al. // Mater. Lett. 2022. V. 308. P. 131193.
11. Миронов М.М. и др. // Вестник технологического университета. 2017. Т. 20 (12). С. 58.
12. Миронов М.М., Гребенщикова М.М., Стародумова Е.В. // Вестник технологического университета. 2016. Т. 19 (24). С. 85.
13. Kuzenov V.V., Ryzhkov S.V. // Symmetry. 2021. V. 13. P. 927.
14. Varaksin A.Yu., Ryzhkov S.V. // Symmetry. 2022. V. 14 (11). P. 2433.
15. Миронов М.М. и др. Патент РФ № 2554773. 2015.
16. Гребенщикова М.М. и др. Патент РФ №2016145729. 2017.
17. Абдуллин И.Ш. и др. Патент РФ № 118861. 2012.
Review
For citations:
Grebenshchikova M.M., Mironov M.M. Synthesis of Multilayer Nanostructures Hf–Ti–N from the Plasma Phase. Nuclear Physics and Engineering. 2024;15(3):305-310. (In Russ.) https://doi.org/10.56304/S2079562923030181. EDN: BJUSYG