Charge Properties of Thorium Implanted in Silicon Oxide
https://doi.org/10.1134/S2079562920040090
Abstract
A study of thorium atoms implanted in silicon oxide was carried out usimg the density functional theory method. The charge properties of Th in the ThO2:nSiO2 and Th:nSiO2 compounds, where Th acts as an interstitial and substitutional impurity in cristobalite, have been studied. Geometric optimization of structures is carried out with allowance for electron-electron interactions, self-consistent distribution of electron density is investigated, and Bader effective charges are estimated.
About the Authors
U. N. KurelchukRussian Federation
Moscow, 115409
P. V. Borisyuk
Russian Federation
Moscow, 115409
A. V. Nikolaev
Russian Federation
Moscow, 115409
Moscow, 119991
E. V. Tkalya
Russian Federation
Moscow, 115409
Moscow, 119991
Moscow, 115191
References
1. Sikorsky T., Geist J. // Phys. Rev. Lett. 2020. V. 125. P. 142503.
2. Helmer R.G., Reich C.W. // Phys. Rev. C. 1994. V. 49. P. 1845.
3. Beck B.R., Becker J.A., Beiersdorfer P. et al. // Phys. Rev. Lett. 2007. V. 98. P. 142501.
4. Von der Wense L., Seiferle B., Laatiaoui M. et al. // Nature (London). 2016. V. 533. P. 47.
5. Seiferle B., Von der Wense L., Bilous P.V. et al. // Nature (London). 2019. V. 573. P. 243.
6. Strizhov V.F., Tkalya E.V. // Sov. Phys. JETP. 1991. V. 72. P. 387.
7. Tkalya E.V. // Sov. J. Nucl. Phys. 1992. V. 55 . P. 1611.
8. Tkalya E.V. // JETP Lett. 1992. V. 55. P. 211.
9. Kalman P., Keszthelyi T. // Phys. Rev. C. 1994. V. 49. P. 324.
10. Tkalya E.V., Varlamov V. O., Lomonosov V. V., Nikulin S. A. // Phys. Scr. 1996. V. 53. P. 296.
11. Porsev S.G., Flambaum V.V., Peik E., Tamm C. // Phys. Rev. Lett. 2010. V. 105. P. 182501.
12. Muller R.A., Volotka A.V., Surzhykov A. // Phys. Rev. A. 2019. V. 99. P. 042517.
13. Borisyuk P.V., Kolachevsky N.N., Taichenachev A.V., Tkalya E.V., Tolstikhina I.Y., Yudin V.I. // Phys. Rev. C. 2019. V. 100. P. 0 44306.
14. Dzyublik A.Y. // Phys. Rev. C. 2020. V. 102. P. 024604.
15. Dykhne A.M., Tkalya E.V. // JETP Lett. 1998. V. 67. P. 549.
16. Flambaum V.V. // Phys. Rev. Lett. 2006. V. 97. P. 092502.
17. Tkalya E.V. // Laser Phys 2004. V. 14. P. 360.
18. Arutyunyan R.V., Bolshov L.A., Vikharev V.D. et al. // Sov. J. Nucl. Phys. 1991. V. 53. P. 23.
19. Tkalya E.V. // Phys. Rev. A. 2007. V. 75. P. 022509.
20. Tkalya E.V. // Phys. Rev. Lett. 2018. V. 120. P. 122501.
21. Tkalya E.V. // Phys. Rev. Lett. 2020. V. 124. P. 242501.
22. Tkalya E.V. // JETP Lett. 2000. V. 71. P. 311.
23. Tkalya E.V., Zherikhin A.N., Zhudov V.I. // Phys. Rev. C. 2000. V. 61. P. 064308.
24. Peik E., Tamm C. // Europhys. Lett. 2003. V. 61. P. 181.
25. Campbell C.J., Radnaev A.G., Kuzmich A. et al. // Phys. Rev. Lett. 2012. V. 108. P. 120802.
26. Peik E., Okhapkin M. // C. R. Phys. 2015. V. 16. P. 516.
27. Tkalya E.V. // Phys. Rev. Lett. 2011. V. 106. P. 162501.
28. Tkalya E.V., Yatsenko L.P. // Laser Phys. Lett. 2013. V. 10. P. 105808.
29. Borisyuk P.V., Chubunova E.V., Kolachevsky N.N., Vasiliev O.S., Tkalya E.V. // Phys. Status Solidi A. 2020. V. 217. P. 1900551.
30. Beck B.R. et al . // Report LLNL-PROC-415170.
31. Borisyuk P.V., Chubunova E.V., Lebedinskii Y.Y., Tkalya E.V., Vasilyev O.S., Yakovlev V.P., Strugovshchikov E., Mamedov D., Pishtshev A., Karazhanov S.Z. // Laser Phys. Lett. 2018. V. 15. P. 056101.
32. Teterin Y.A., Utkin I.O., Melnikov I.V., Lebedev A.M., Teterin A.Y., Ivanov K.E., Nikitin A.S., Vukchevich L. // J. Struct. Chem. 2000. V. 41. P. 1167.
33. Bruggemann A.G. // Ann. Phys. 1935. V. 24. P. 636.
34. Бриггс Д., Сих М.П. // Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии. 1987. Москва: Мир.
35. Sanville E., Kenny S.D., Smith R., Henkelman G. // J. Comput. Chem. 2007. V. 28. P. 5.
36. Tang W., Sanville E., Hekkelman G. // J. Phys.: Compute Mater. 2009. V. 21. P. 084204.
37. Giannozzi P. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 465901.
38. Aulbur W.G., Jöhnsson L., Wilkins J.W. // Solid State Phys. 2000. V. 54. P. 1.
39. Martin-Samos L., Bussi G., Ruini A., Molinari E., Caldas M. // J. Phys. Status Solidi B. 2011. V. 248. P. 1061.
40. Prandini G., Mazzaro A., Castelli I.E., Mounet N., Marzari N. // npj.Comput. Mater. 2018. V. 4. P. 72.
41. Lejaeghere K. et al. // Science (Washington, DC, USA). 2016. V. 351 (6280). P. 1415.
42. Materials Data on ThSiO 4 https://materialsproject.org/docs/calculations https://doi.org/10.17188/1295645
43. Broyden C.G. // IMA J. Appl. Math. 1970. V. 6(1). P. 76.
44. Fletcher R. // Comput. J. 1970. V. 13. P. 317.
45. Goldfarb D. // Math. Comput. 1970. V. 24. P. 23.
46. Shanno D.F. // Math. Comput. 1970. V. 24. P. 647.
47. Becke A.D., Edgecombe K.E. // J. Chem. Phys. 1990. V. 92. P. 5397.
48. Fuentealba P., Chamorro E., Santos J.C. // Theor. Comput. Chem. 2007. V. 19. P. 57.
Review
For citations:
Kurelchuk U.N., Borisyuk P.V., Nikolaev A.V., Tkalya E.V. Charge Properties of Thorium Implanted in Silicon Oxide. Nuclear Physics and Engineering. 2020;11(5):271-277. (In Russ.) https://doi.org/10.1134/S2079562920040090