Preview

Nuclear Physics and Engineering

Advanced search

Charge Properties of Thorium Implanted in Silicon Oxide

https://doi.org/10.1134/S2079562920040090

Abstract

A study of thorium atoms implanted in silicon oxide was carried out usimg the density functional theory method. The charge properties of Th in the ThO2:nSiO2 and Th:nSiO2 compounds, where Th acts as an interstitial and substitutional impurity in cristobalite, have been studied. Geometric optimization of structures is carried out with allowance for electron-electron  interactions, self-consistent distribution of electron density is investigated, and Bader effective charges are estimated.

About the Authors

U. N. Kurelchuk
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



P. V. Borisyuk
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 115409



A. V. Nikolaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Skobeltsyn Institute of Nuclear Physics, Lomonosov Mo scow State University (SINP MSU)
Russian Federation

Moscow, 115409

Moscow, 119991



E. V. Tkalya
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Lebedev Physical Institute of the Russian Academy of Sciences; Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE RAN)
Russian Federation

Moscow, 115409

Moscow, 119991

Moscow, 115191



References

1. Sikorsky T., Geist J. // Phys. Rev. Lett. 2020. V. 125. P. 142503.

2. Helmer R.G., Reich C.W. // Phys. Rev. C. 1994. V. 49. P. 1845.

3. Beck B.R., Becker J.A., Beiersdorfer P. et al. // Phys. Rev. Lett. 2007. V. 98. P. 142501.

4. Von der Wense L., Seiferle B., Laatiaoui M. et al. // Nature (London). 2016. V. 533. P. 47.

5. Seiferle B., Von der Wense L., Bilous P.V. et al. // Nature (London). 2019. V. 573. P. 243.

6. Strizhov V.F., Tkalya E.V. // Sov. Phys. JETP. 1991. V. 72. P. 387.

7. Tkalya E.V. // Sov. J. Nucl. Phys. 1992. V. 55 . P. 1611.

8. Tkalya E.V. // JETP Lett. 1992. V. 55. P. 211.

9. Kalman P., Keszthelyi T. // Phys. Rev. C. 1994. V. 49. P. 324.

10. Tkalya E.V., Varlamov V. O., Lomonosov V. V., Nikulin S. A. // Phys. Scr. 1996. V. 53. P. 296.

11. Porsev S.G., Flambaum V.V., Peik E., Tamm C. // Phys. Rev. Lett. 2010. V. 105. P. 182501.

12. Muller R.A., Volotka A.V., Surzhykov A. // Phys. Rev. A. 2019. V. 99. P. 042517.

13. Borisyuk P.V., Kolachevsky N.N., Taichenachev A.V., Tkalya E.V., Tolstikhina I.Y., Yudin V.I. // Phys. Rev. C. 2019. V. 100. P. 0 44306.

14. Dzyublik A.Y. // Phys. Rev. C. 2020. V. 102. P. 024604.

15. Dykhne A.M., Tkalya E.V. // JETP Lett. 1998. V. 67. P. 549.

16. Flambaum V.V. // Phys. Rev. Lett. 2006. V. 97. P. 092502.

17. Tkalya E.V. // Laser Phys 2004. V. 14. P. 360.

18. Arutyunyan R.V., Bolshov L.A., Vikharev V.D. et al. // Sov. J. Nucl. Phys. 1991. V. 53. P. 23.

19. Tkalya E.V. // Phys. Rev. A. 2007. V. 75. P. 022509.

20. Tkalya E.V. // Phys. Rev. Lett. 2018. V. 120. P. 122501.

21. Tkalya E.V. // Phys. Rev. Lett. 2020. V. 124. P. 242501.

22. Tkalya E.V. // JETP Lett. 2000. V. 71. P. 311.

23. Tkalya E.V., Zherikhin A.N., Zhudov V.I. // Phys. Rev. C. 2000. V. 61. P. 064308.

24. Peik E., Tamm C. // Europhys. Lett. 2003. V. 61. P. 181.

25. Campbell C.J., Radnaev A.G., Kuzmich A. et al. // Phys. Rev. Lett. 2012. V. 108. P. 120802.

26. Peik E., Okhapkin M. // C. R. Phys. 2015. V. 16. P. 516.

27. Tkalya E.V. // Phys. Rev. Lett. 2011. V. 106. P. 162501.

28. Tkalya E.V., Yatsenko L.P. // Laser Phys. Lett. 2013. V. 10. P. 105808.

29. Borisyuk P.V., Chubunova E.V., Kolachevsky N.N., Vasiliev O.S., Tkalya E.V. // Phys. Status Solidi A. 2020. V. 217. P. 1900551.

30. Beck B.R. et al . // Report LLNL-PROC-415170.

31. Borisyuk P.V., Chubunova E.V., Lebedinskii Y.Y., Tkalya E.V., Vasilyev O.S., Yakovlev V.P., Strugovshchikov E., Mamedov D., Pishtshev A., Karazhanov S.Z. // Laser Phys. Lett. 2018. V. 15. P. 056101.

32. Teterin Y.A., Utkin I.O., Melnikov I.V., Lebedev A.M., Teterin A.Y., Ivanov K.E., Nikitin A.S., Vukchevich L. // J. Struct. Chem. 2000. V. 41. P. 1167.

33. Bruggemann A.G. // Ann. Phys. 1935. V. 24. P. 636.

34. Бриггс Д., Сих М.П. // Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии. 1987. Москва: Мир.

35. Sanville E., Kenny S.D., Smith R., Henkelman G. // J. Comput. Chem. 2007. V. 28. P. 5.

36. Tang W., Sanville E., Hekkelman G. // J. Phys.: Compute Mater. 2009. V. 21. P. 084204.

37. Giannozzi P. et al. // J. Phys.: Condens. Matter. 2017. V. 29. P. 465901.

38. Aulbur W.G., Jöhnsson L., Wilkins J.W. // Solid State Phys. 2000. V. 54. P. 1.

39. Martin-Samos L., Bussi G., Ruini A., Molinari E., Caldas M. // J. Phys. Status Solidi B. 2011. V. 248. P. 1061.

40. Prandini G., Mazzaro A., Castelli I.E., Mounet N., Marzari N. // npj.Comput. Mater. 2018. V. 4. P. 72.

41. Lejaeghere K. et al. // Science (Washington, DC, USA). 2016. V. 351 (6280). P. 1415.

42. Materials Data on ThSiO 4 https://materialsproject.org/docs/calculations https://doi.org/10.17188/1295645

43. Broyden C.G. // IMA J. Appl. Math. 1970. V. 6(1). P. 76.

44. Fletcher R. // Comput. J. 1970. V. 13. P. 317.

45. Goldfarb D. // Math. Comput. 1970. V. 24. P. 23.

46. Shanno D.F. // Math. Comput. 1970. V. 24. P. 647.

47. Becke A.D., Edgecombe K.E. // J. Chem. Phys. 1990. V. 92. P. 5397.

48. Fuentealba P., Chamorro E., Santos J.C. // Theor. Comput. Chem. 2007. V. 19. P. 57.


Review

For citations:


Kurelchuk U.N., Borisyuk P.V., Nikolaev A.V., Tkalya E.V. Charge Properties of Thorium Implanted in Silicon Oxide. Nuclear Physics and Engineering. 2020;11(5):271-277. (In Russ.) https://doi.org/10.1134/S2079562920040090

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)