Preview

Nuclear Physics and Engineering

Advanced search

Methods for Measuring Daughter Products of Radon Decay in the Surface Atmospheric Layer of the Earth

https://doi.org/10.56304/S2079562920060159

Abstract

   At present, an actual problem is the study of temporal variations of various nuclear radiation from the lithosphere in foothill and desert landscapes. This refers to the fluxes of neutrons, gamma quanta, beta particles and emanations of heavy chemical elements. The problem of studying such distributions in the surface atmospheric layer of the Earth remains relevant, due to the fact that they are concentrated in the human environment and have a direct impact on the health of the population. This work is devoted to the study of beta-spectra of the natural radiation background in the surface atmospheric layer of the Earth. The origin of the measured beta spectra is associated with the daughter products of the decay of radon isotopes Rn-219, Rn-220, Rn-222 in three natural radioactive series. The spectra were measured from October 2018 to October 2019 in the foothills of the Zailiysky Alatau Tien Shan in Almaty. The frequency of measurements averaged about 10 measurements per day with an exposure of at least 2000 s. A database of daily, seasonal and annual variations in beta spectra has been accumulated. For the analysis of the data obtained, a special software “Analyzer of the Beta Spectra Array” was developed, which made it possible to process the standard output files of the “Sputnik” spectrometric installation and to integrate each spectrum in a given time interval. Time variation over the measured period was described using a standard mathematical computer package for wavelet analysis. The wavelet spectra obtained as a result of integration are used to identify daily, seasonal, and annual effects in variations of beta emanations. Along with this, similar mathematical processing was carried out to predict the impact of external factors in temporal variations of beta particles.

About the Authors

V. V. Dyachkov
National Nanotechnology Laboratory of Open Type; Al-Farabi KazNU
Kazakhstan

050040; Almaty



Yu. A. Zaripova
National Nanotechnology Laboratory of Open Type; Al-Farabi KazNU
Kazakhstan

050040; Almaty



A. V. Yushkov
National Nanotechnology Laboratory of Open Type; Al-Farabi KazNU
Kazakhstan

050040; Almaty



A. L. Shakirov
National Nanotechnology Laboratory of Open Type; Al-Farabi KazNU
Kazakhstan

050040; Almaty



M. T. Bigeldiyeva
National Nanotechnology Laboratory of Open Type
Kazakhstan

050040; Almaty



A. A. Medeubayeva
Al-Farabi KazNU
Kazakhstan

050040; Almaty



A. E. Stvayeva
Al-Farabi KazNU
Cayman Islands

050040; Almaty



References

1. Lecomte J.F., Solomon S., Takala J., et al. // Ann. ICRP. 2014. V. 43. No. 3. P. 5–73.

2. Ярмошенко И.В., Кирдин И.А., Жуковский М.В., Астраханцева С.Ю. // Медицинская радиология и радиационная безопасность. 2003. Т. 48. № 5. С. 33–43.

3. Dyachkov V.V., Zaripova Yu.A., Yushkov A.V., Shakirov A.L., Bigeldiyeva M.T., Dyussebayeva K.S., Abramov K.E. // Phys. Sci. Technol. 2017. V. 4. No. 1. P. 20–26.

4. Дьячков В.В., Бияшева З.М., Исмагулова Д.А., Нукетай А.Б., Зарипова Ю.А., Шакиров А.Л., Юшков А.В. // Вестник. Сер. физ. Т. 70. № 3. С. 23–28.

5. Защита от радона-222 в жилых зданиях и на рабочих местах. Публикация 65 МКРЗ. Пер с англ. 1995. Москва: Энергоатомиздат.

6. Риск заболевания раком легких в связи с облучением дочерними продуктами распада радона внутри помещений: Публикация 50 МКРЗ. Пер с англ. 1992. Москва: Энергоатомиздат.

7. 2012 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans // IARC. 2012. Vol. 100D: Radiation.

8. The World Health Organization (WHO). WHO Handbook on Indoor Radon. 2009. https://iris.who.int/bitstream/handle/10665/44149/9789241547673_eng.pdf.

9. Tirmarche M., Harrison J.D., Laurier D., et al. // Ann. ICRP. 2010. V. 40. No. 1. P. 1–64.

10. Rolle R. // Am. Ind. Hyg. Assoc. J. 1969. V. 30. No. 2. P. 153–160.

11. Thomas J.W. // Health Phys. 1972. V. 23. No. 6. P. 783–789.

12. Markov K.P., Ryabov N.V., Stas K.N. // Sov. J. At. Energy. 1962. V. 12. P. 333–337.

13. Yushkov A.V., Dyachkov V.V., Zaripova Yu.A. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84. No. 10. P. 1183–1186.

14. Amgarou K., Font L., Baixeras C. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2003. V. 506. Nos. 1–2. P. 186–198.

15. Misdaq M.A., Ouguidi J. // J. Radioanal. Nucl. Chem. 2010. V. 287. P. 135–150.

16. Dyachkov V.V., Zaripova Yu.A., Yushkov A.V., Shakirov A.L., Bigeldiyeva M.T., Dyussebayeva K.S., Abramov K.E. // Phys. Sci. Technol. 2019. V. 6. No. 1. P. 11–17.

17. Zaripova Yu.A., Dyachkov V.V., Yushkov A.V. // Phys. At Nucl. 2019. V. 82. No. 12. P. 1597–1601.

18. Dyachkov V.V., Zaripova Yu.A., Yushkov A.V., Shakirov A.L., Biyasheva Z.M., Bigeldiyeva M.T., Dyussebayeva K.S., Abramov K.E. // Phys. At. Nucl. 2018. V. 81. No. 10. P. 1509–1514.

19. Барановская Н.В., Игнатова Т.Н., Рихванов Л.П. // Вестник Томского государственного университета. 2010. No. 339. С. 182–188.

20. Яковлев А.Н. Введение в вейвлет-преобразования. 2003. Новосибирск: Изд-во НГТУ.


Review

For citations:


Dyachkov V.V., Zaripova Yu.A., Yushkov A.V., Shakirov A.L., Bigeldiyeva M.T., Medeubayeva A.A., Stvayeva A.E. Methods for Measuring Daughter Products of Radon Decay in the Surface Atmospheric Layer of the Earth. Nuclear Physics and Engineering. 2021;12(3):192-198. (In Russ.) https://doi.org/10.56304/S2079562920060159

Views: 40


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)