Comprehensive Analysis of Nanostructure of Oxide Dispersion Strengthened Steels as Prospective Materials for Nuclear Reactors
https://doi.org/10.1134/S2079562920010121
Abstract
Increased mechanical properties of oxide dispersion strengthened (ODS) steels are mainly due to the high density of uniformly distributed oxide inclusions. It is well known that some alloying elements, such as Ti, V, Al, … play an important role in the formation of oxides/nanoclusters and affect the density and size of these inclusions. In this paper, a wide range of ODS steels containing various alloying elements are studied. Microstructural analysis was performed by transmission electron microscopy and atom probe tomography. Various types of inclusions were found in the steels: oxides of the Y–Ti–O or Y–Al–O types with sizes of ~2– 15 nm, as well as nanoclusters (2–5 nm) enriched in Y, O, Cr, as well as Ti, V, Al, if these elements were present in the material. It was shown that oxides contribute to the hardening of steels considerably, and clusters did comparable contribution with the contribution of oxides only in Austenitic ODS and 14Cr ODS steels.
About the Authors
S. V. RogozhkinRussian Federation
Moscow, 117218; Moscow, 115409
A. A. Khomich
Russian Federation
Moscow, 117218
A. A. Bogachev
Russian Federation
Moscow, 117218; Moscow, 115409
A. A. Nikitin
Russian Federation
Moscow, 117218; Moscow, 115409
A. A. Lukyanchuk
Russian Federation
Moscow, 117218
O. A. Raznitsyn
Russian Federation
Moscow, 117218
A. S. Shutov
Russian Federation
Moscow, 117218
A. L. Vasiliev
Russian Federation
Moscow, 123182 ; Moscow, 119333
M. Yu. Presniakov
Russian Federation
Moscow, 123182
References
1. Carlan Y., Bechade J.-L., Dubuisson P., Seran J.-L., Billot P., Bougault A., Cozzika T., Doriot S., Hamon D., Henry J., Ratti M., Lochet N., Nunes D., Olier P., Leblond T., Mathon M.H. // J. Nucl. Mater. 2009. V. 386– 388. P. 430.
2. Jeong Y.H., Kim W.J., Kim D.J., Jang J., Kang S.H., Chun Y.-B., Kim T.K. // Proc. Eng. 2014. V. 86. P. 1.
3. Mateus R., Carvalho P.A., Nunes D., Alves L.C., Franco N., Correia J.B., Alves E. // Fusion Eng. Des. 2011. V. 86. P. 2386.
4. Kimura A., Cho H.-S., Toda N., Kasada R., Yutani K., Kishimoto H., Iwata N., Ukai S., Fujiwara M. // J. Nucl. Sci. Technol. 2007. V. 44. No. 3. P. 323.
5. Wharry J.P., Swenson M.J., Yano K.H. // J. Nucl. Mater. 2017. V. 486. P. 11.
6. Coppola R., Klimiankou M., Lindau R., May R.P., Valli M. // Phys. B: Cond. Mat. 2004. V. 350. P. 545.
7. Han Y.-S., Mao X., Jang J., Kim T.-K. // Appl. Phys. A. 2015. V. 119. P. 249.
8. Williams C.A., Marquis E.A., Cerezo A., Smith G.D.W. // J. Nucl. Mater. 2010. V. 400. P. 37.
9. Aleev A.A, Iskandarov N.A., Klimenkov M., Lindau R., Möslang A., Nikitin A.A., Rogozhkin S.V., Vladimirov P., Zaluzhnyi A.G. // J. Nucl. Mater. 2011. V. 409. P. 65.
10. Рогожкин С.В., Богачев А.А., Кириллов Д.И., Никитин А.А., Орлов Н.Н., Алеев А.А., Залужный А.Г., Козодаев М.А. // Физика металлов и металловедение. 2014. Т. 115. № 12. С. 1328; Rogozhkin S.V., Bogachev A.A., Kirillov D.I., Nikitin A.A., Orlov N.N., Aleev A.A., Zaluzhnyi A.G., Kozodaev M.A. // Phys. Met. Metallogr. 2014. V. 115. P. 1259.
11. Schaaf B.v.d., Tavassoli A.-A.F., Fazio C., Rigal E., Diegele E., Lindau R., Marois G., Fusion Eng. Des. 2003. V. 69. P. 197.
12. Lindau R., Möslang A., Rieth M., Klimiankou M., Materna-Morris E., Alamo A., Tavassoli A.-A.F., Cayron C., Lancha A.-M., Fernandez P., Baluc N., Schäublin R., Diegele E., Filacchioni G., Rensman J.W., Schaaf B.v.d., Lucon E., Dietz W. // Fusion Eng. Des. 2005. V. 75–79. P. 989.
13. Ukai S., Fujiwara M. // J. Nucl. Mater. 2002. V. 307– 311. P. 749.
14. Рогожкин С.В., Орлов Н.Н., Никитин А.А., Алеев А.А., Залужный А.Г., Козодаев М.А., Lindau R., Möslang A., Vladimirov P. // Перспективные материалы. 2014. № 12. С. 38; Rogozhkin S.V., Orlov N.N., Nikitin A.A., Aleev A.A., Zaluzhny A.G., Kozodaev M.A., Lindau R., Möslang A., Vladimirov P. // Inorg. Mater. Appl. Res. 2015. V. 6(2). P. 151.
15. Gräning T., Rieth M., Hoffmann J., Seils S., Edmondson P.D., Möslang A. // J. Nucl. Mater. 2019. V. 516. P. 335.
16. Jaumier T., Vincent S., Vincent L., Desmorat R. // J. Nucl. Mater. 2019. V. 518. P. 274.
17. Xu S., Zhou Z., Jia H., Yao Z. // Steel Res. Int. 2018. V. 90. P. 1800594.
18. Klimenkov M., Lindau R., Möslang A. // J. Nucl. Mater. 2009. V. 386. P. 553.
19. Bhattacharyya D., Dickerson P., Odette G.R., Maloy S.A., Misra A., Nastsi M. // Philos. Mag. 2012. V. 92. P. 2089.
20. Hsiung L., Fluss M., Tumey S., Kuntz J., El-Dasher B., Wall M., Choi B., Kimura A., Willaime F., Serruys Y. // J. Nucl. Mater. 2011. V. 409. P. 72.
21. Oono N.H., Ukai S., Hayashi S., Ohtsuka S., Kaito T., Kimura A., Torimaru T., Sakamoto K. // J. Nucl. Mater. 2017. V. 493. P. 180.
22. Song P., Kimura A., Yabuuchi K., Dou P., Watanabe H., Gao J., Huang Y.-J. // J. Nucl. Mater. 2020. V. 529 P. 151953.
23. Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов А.С., Разницын О.А., Кириллов С.Е. // Приборы и техника эксперимента. 2017. № 3. С. 129; Rogozhkin S.V., Aleev A.A., Lukyanchuk A.A., Shutov A.S., Raznitsyn O.A., Kirillov S.E. // Instrum. Exp. Tech. 2017. V. 60. P. 428.
24. Разницын О.А., Лукьянчук А.А., Шутов А.С., Рогожкин С.В. и др.// Масс-спектрометрия. 2017. Т. 14. №. 1. С. 33; Raznitsyn O.A., Lukyanchuk A.A., Shutov A.S., Rogozhkin S.V. et al. // J. Anal. Chem. 2017. V. 72. No. 14. P. 1404.
25. Алеев A.А., Рогожкин С.В., Лукьянчук А.А., Шутов А.С., Разницын О.А., Никитин А.А., Искандаров Н.А., Корчуганова О.А., Кириллов С.Е. Свидетельство о государственной регистрации программы для ЭВМ № 2018661876 (20 сентября 2018 г.). https://www1.fips.ru/ofpstorage/Doc/IZPM/RUNWC1/000/000/002/702/112/%D0%98%D0%97- 02702112-00001/document.pdf
26. Bas P., Bostel A., Deconihout B., Blavette D. // Appl. Surf. Sci. 1995. V. 87. P. 298.
27. Miller M.K. Atom Probe Tomography: Analysis at the Atomic Level. 2000. New York: Kluwer Academic.
28. Cerezo A., Davin L. // Surf. Interface Anal. 2007. V. 39. P. 184.
29. Lucas G.E. // J. Nucl. Mater. 1993. V. 206. P. 287.
30. Ijiri Y., Oono N., Ukai S., Ohtsuka S., Kaito T., Matsukawa Y. // Nucl. Mater. Energy. 2016. V. 9. P. 378.
31. Gil E., Ordás N., García-Rosales C., Iturriza I. // Fusion Eng. Des. 2015. V. 98–99. P. 1973.
32. Swenson M.J., Dolph C.K., Wharry J.P. // J. Nucl. Mater. 2016. V. 479. P. 426.
Review
For citations:
Rogozhkin S.V., Khomich A.A., Bogachev A.A., Nikitin A.A., Lukyanchuk A.A., Raznitsyn O.A., Shutov A.S., Vasiliev A.L., Presniakov M.Yu. Comprehensive Analysis of Nanostructure of Oxide Dispersion Strengthened Steels as Prospective Materials for Nuclear Reactors. Nuclear Physics and Engineering. 2020;11(1):22-31. (In Russ.) https://doi.org/10.1134/S2079562920010121