NEVOD-DECOR Experiment on the Measurement of the Energy Deposit of Cosmic Ray Muon Bundles
https://doi.org/10.1134/S2079562920010170
Abstract
The excess of multi-muon events in comparison with calculations which was found in many experiments at ultrahigh energies of extensive air showers (EAS) cannot be explained using contemporary models of hadron interactions. The existence of this excess was called the “muon puzzle”. One of the ways to solve this problem is the study of the energy characteristics of EAS muon component. For this purpose, the energy deposit of cosmic ray muon bundles is measured in the NEVOD-DECOR experiment. The registration of muon bundles in a wide range of zenith angles allows one to explore a wide range of energies of the primary particles of cosmic rays (from 10 to 1000 PeV) in frame of a single experiment. The results of the measurements of the energy deposit of bundles over a long observation period are presented.
About the Authors
Е. А. YurinaRussian Federation
Moscow, 115409
N. S. Barbashina
Russian Federation
Moscow, 115409
А. G. Bogdanov
Russian Federation
Moscow, 115409
V. V. Kindin
Russian Federation
Moscow, 115409
R. Р. Kokoulin
Russian Federation
Moscow, 115409
К. G. Kompaniets
Russian Federation
Moscow, 115409
G. Mannoсchi
Italy
Pino Torinese (To), 10025
А. А. Petrukhin
Russian Federation
Moscow, 115409
G. Trinchero
Italy
Pino Torinese (To), 10025
S. S. Khokhlov
Russian Federation
Moscow, 115409
V. V. Shutenko
Russian Federation
Moscow, 115409
I. I. Yashin
Russian Federation
Moscow, 115409
References
1. Dembinski H.P. et al. (EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, Pierre Auger, SUGAR, Telescope Array, and Yakutsk EAS Array Collabs.) // EPJ Web Conf. 2019. V. 210. P. 02004.
2. Dembinski H.P. // Phys. At. Nucl. 2019. V. 82. P. 644.
3. Kokoulin R.P., Bogdanov A.G., Mannocchi G. et al. // Nucl. Phys. B (Proc. Suppl.). 2009. V. 196. P. 106.
4. Bogdanov A.G., Gromushkin D.M., Kokoulin R.P. et al. // Phys. At. Nucl. 2010. V. 73. P. 1852.
5. Bogdanov A.G., Kokoulin R.P., Mannocchi G. et al. // Astropart. Phys. 2018. V. 98. P. 13.
6. Petrukhin A.A. // Nucl. Instrum. Methods Phys. Res. A. 2014. V. 742. P. 228.
7. Petrukhin A.A. // Phys. Usp. 2015. V. 58. P. 486.
8. Kindin V.V., Amelchakov M.B., Barbashina N.S. et al // Instrum. Exp. Tech. 2018. V. 61. P. 649.
9. Barbashina N.S., Chernov D.V., Ezubchenko A.A. et al. // Instrum. Exp. Tech. 2000. V. 43. P. 743.
10. Bogdanov A.G., Barbashina N.S., Dushkin L.I. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. P. 484.
11. Yurina E.A., Bogdanov A.G., Barbashina N.S. et al. // Phys. At. Nucl. 2019. V. 82. P. 620.
12. Heck D., Knapp J., Capdevielle J.N. et al. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. 1998. Forschungszentrum Karlsruhe Report.
13. Riehn F., Engel R., Fedynitch A. et al. // Proceedings of 34th International Cosmic Ray Conference. Hague. 2015. PoS (ICRC2015) 558.
14. Ferrari A., Sala P.R., Fasso A. et al. FLUKA: A MultiParticle Transport Code (Program Version 2005). 2005. Geneva: CERN.
15. Agostinelli S., Allison J., Amako K. et al. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 506. P. 250.
16. Allison J., Amako K., Apostolakis J. et al. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 835. P. 186.
Review
For citations:
Yurina Е.А., Barbashina N.S., Bogdanov А.G., Kindin V.V., Kokoulin R.Р., Kompaniets К.G., Mannoсchi G., Petrukhin А.А., Trinchero G., Khokhlov S.S., Shutenko V.V., Yashin I.I. NEVOD-DECOR Experiment on the Measurement of the Energy Deposit of Cosmic Ray Muon Bundles. Nuclear Physics and Engineering. 2020;11(2):99-104. (In Russ.) https://doi.org/10.1134/S2079562920010170