Preview

Nuclear Physics and Engineering

Advanced search

Calibration of a Radioisotope Device

https://doi.org/10.56304/S2079562922050566

Abstract

The article provides data on radioisotope devices, including a radioisotope level meter – a radioisotope indicator of the level of petroleum coke and a radioisotope density meter. The article describes the methods of calibration of radioisotope density meter Gammapilot (Endress+Hauser AG, Switzerland). An ionizing radiation source of 137Cs GCS7.021.1 type with an activity of 3.06 × 109 Bq (82.7 mCi) was used to complete the radioisotope densitometer, and its tightness was checked using the immersion method with 8% ortophosphoric acid as the immersion liquid. To calibrate radioisotope densitometers, simulator stands and liquid simulators of various densities were made based on a mixture of tribromomethane and ethyl alcohol solutions. Radioisotope density meters were calibrated for low pulp emulsion density, medium pulp emulsion density, and high pulp emulsion density. In calibrated radioisotope density meters, upon reaching the lower limit of the pulp density in the detection unit, an output electrical signal appears at the “0–5 mA” connector, and when the upper limit of the pulp density is reached, an output electrical signal appears at the “4–20 mA” connector.

About the Authors

U. T. Ashrapov
Institute of Nuclear Physics of the Academy of Sciences
Uzbekistan

Tashkent, 100214



I. I. Sadikov
Institute of Nuclear Physics of the Academy of Sciences
Uzbekistan

Tashkent, 100214



I. M. Kamilov
Institute of Nuclear Physics of the Academy of Sciences
Uzbekistan

Tashkent, 100214



S. R. Malikov
Institute of Nuclear Physics of the Academy of Sciences
Uzbekistan

Tashkent, 100214



References

1. Аминжанов М. и др. // ВАНТ. Сер.: техническая физика и автоматизация. 2017. № 77. С 70. http://www.niitfa.ru/upload/docs/vant/vant_tfa-77.pdf.

2. Audi G., Wapstra A.H., Thibault C. // Nucl. Phys. A. 2003 V. 729 (1). P. 337. https://doi.org/10.1016/j.nuclphysa.2003.11.003

3. СанПиН-2006. Нормы радиационной безопасности и основные санитарные правила обеспечения радиационной безопасности. 2006. https://lex.uz/docs/1908086.

4. ГОСТ Р 51919–2002. Государственный стандарт Российской Федерации. Закрытые источники ионизирующего излучения радионуклидов. Методы проверки герметичности. https://files.stroyinf.ru/Data/64/6401.pdf.

5. Ashrapov U.T. et al. // Phys. At. Nucl. 2021. V. 84 (9). P. 1540. https://doi.org/10.1134/S1063778821090052

6. ГОСТ Р 51873–2002. Государственный стандарт Российской Федерации. Источники ионизирующих радионуклидных излучений закрыты Общие технические требования. https://www.complex-doc.ru.

7. ISO 9978: 1992(E). International Organization for Standardization. Radiation Protection – Sealed Radioactive Sources – Leakage Test Methods. 1992. https://law.resource.org/pub/us/cfr/ibr/004/iso.9978.1992.pdf.

8. Brief Operating Instructions Gammapilot M FMG60. Radiometric Measurement. 2018. Switzerland: Endress + Hauser. https://portal.endress.com/dla/5000387/6648/000/01/KA01093FEN_1412.pdf.

9. Жукова Ю.П. Вибрационные плотномеры. 1991. Москва: Энергоатомиздат.

10. ГОСТ 8.368-79. Государственная система обеспечения единства измерений. Радиоизотопные плотномеры для жидких сред и пульпы. Методы и средства проверки. https://files.stroyinf.ru/Index/14/14635.htm.

11. СанПиН 2.6.1.3287-15. Санитарно-эпидемиологические требования к обращению и установке радиоизотопных приборов. https://docs.cntd.ru/document/420292637


Review

For citations:


Ashrapov U.T., Sadikov I.I., Kamilov I.M., Malikov S.R. Calibration of a Radioisotope Device. Nuclear Physics and Engineering. 2023;14(6):578-586. (In Russ.) https://doi.org/10.56304/S2079562922050566

Views: 77


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)