Preview

Nuclear Physics and Engineering

Advanced search

Specific Features of the Positron Acceleration Dynamics in Traveling-Wave Electron LINACs

https://doi.org/10.1134/S2079562920010029

Abstract

For multisectional traveling wave linear electron accelerators, the acceleration of positrons from an electron-bombarded intersectional converter target is considered by comparison of the model with an experiment. For the accelerated positrons and their energy spectra, the dependence of maxima of these spectra on the initial phase shift of a microwave (which accelerates the positrons) and on the energy of accelerated positrons and the phase distributions of these positrons are obtained. The spectra of the initial positron energies are found, which are essential in obtaining the accelerated positron current at the maximum of their spectrum. To study giant resonances in atomic nuclei, the efficiencies of obtaining positrons with and without their acceleration at electron LINACs are compared.

About the Authors

L. Z. Dzhilavyan
Institute for Nuclear Research, Russian Academy of Sciences
Russian Federation

Moscow, 117312



А. I. Karev
Lebedev Physical Institute, Russian Academy of Sciences
Russian Federation

Moscow, 119991



References

1. Rachek I.A. et al. // Proc. Int. Sem. “EMIN-2012”. INR RAS, Moscow, 2013. P. 108.

2. Dzhilavyan L.Z. // Bull. Russ. Acad. Sci.: Phys. 2014. V. 78. P. 445.

3. Dzhilavyan L.Z., et al. // Phys. Part. Nucl. 2017. V. 48. No. 1. P. 139.

4. Dzhilavyan L.Z., Kucher N.P. // Sov. J. Nucl. Phys. 1979. V. 30. P. 151.

5. Dietrich S.S., Berman B.L. // At. Data Nucl. Data Tables. 1988. V. 38. P. 199.

6. Varlamov V.V. et al. // Report INDC(NDS)-394. 1999. Vienna: IAEA.

7. Ballam J. et al. // Nucl. Instrum. Methods. Phys. Res. 1969. V. 73. P. 53.

8. Blum D. et al. // Nucl. Instrum. Methods. Phys. Res. 1974. V. 115. P. 553.

9. Argan P. et al. // Nucl. Instrum. Methods Phys. Res. 1984. V. 228. P. 20.

10. Miroshnichenko I.I. et al. // JETP Lett. 1979. V. 29. No. 12. P. 722.

11. Alguard M.J. et al. // Phys. Rev. Lett. 1979. V. 42. P. 1148.

12. Astrelina K.V. et al. // J. Exp. Theor. Phys. 2008. V. 106. P. 77.

13. http://www.inp.nsk.su/nauka/issledovatelskaya-infrastruktura/nauchnye-ustanovki/kompleks-vepp-4-vepp2000/

14. Bondar A.E. // Phys. At. Nucl. 2013. V. 76. P. 1072.

15. https://ctd.inp.nsk.su/c-tau/

16. Miller J. et al. // J. Phys. Rad. 1960. V. 21. P. 755.

17. Jupiter C.P. et al. // Phys. Rev. 1961. V. 121. P. 866.

18. Dzhilavyan L.Z. // Proc. 6th All-Union Conf. Accelerators of Charge Particles. 1979. Dubna: JINR. V. 2. P. 182; Preprint INR P-0099. 1978. Moscow: INR (in Russian).

19. Dzhilavyan L.Z., Karev A.I. // Proc. 7th All-Union Conf. Accelerators of Charge Particles. 1981. Dubna: JINR. V. 1. P. 209 (in Russian).

20. Belyshev S.S., Dzhilavyan L.Z., Polonski A.L. // Phys. At. Nucl. 2020. V. 83. P. 530.

21. Elektrofizicheskaya apparatura promyshlennogo izgotovleniya. Spravochnik [Industrial Electrophysical Equipment. The Handbook]. 1963. Moscow: Gosatomizdat P. 26 (in Russian).

22. Grushetzkiy V.F., Zharenov M.A., Lazareva L.E., Makarov A.V., Petrenko V.V., Ponomarev V.N., Skorik V.A. // Vopr. At. Nauki Tekh., Ser.: Tekh. Fiz. Eksp. 1979. No. 1 (3). P. 44 (in Russian).

23. Valter A.K. et al. // Proc. Int. Conf. Accelerators. Dubna, 1963. 1964. Moscow: Gosatomizdat. P. 420–424; 435–439 (in Russian).

24. Valdner O.A. et al. Spravochnik po diafragmirovannym volnovodam [Diaphragm Waveguide Handbook]. 1969. Moscow: Gosatomizdat (in Russian).

25. Dzhilavyan L.Z., Obozny V.A., Ponomarev V.N. // Vopr. At. Nauki Tekh. Ser.: Lineyn. Uskor. 1976. No. 1(2). P. 59 (in Russian).

26. Smith L. Handbuch der Physik. Band XLIV. Instrumentelle Hilfsmittel der Kernphysik. 1959. SpringerVerlag: Berlin-Göttingen-Heidelberg.

27. Grishaev I.A. et al. // Proc. All-Union Conf. Accelerators of Charge Particles. 1970. Moscow: VINITI. V. 1. P. 574 (in Russian).

28. Kneissl U. et al. // Nucl. Instrum. Methods Phys. Res. 1975. V. 127. P. 1.

29. Hayward E. et al. // Nucl. Instrum. Methods Phys. Res. 1979. V. 159. P. 289.

30. Basargin Yu.G. et. al. // Vopr. At. Nauki Tekh. Ser.: Lineyn. Uskor. 1976. No. 1(2). P. 7 (in Russian).

31. Carlos P. Thesis. 1972. A l’Universite de Paris-SUD. Centre d’Orsay. Orsay, Série A, N° d’ordre 902.


Review

For citations:


Dzhilavyan L.Z., Karev А.I. Specific Features of the Positron Acceleration Dynamics in Traveling-Wave Electron LINACs. Nuclear Physics and Engineering. 2020;11(2):82-91. (In Russ.) https://doi.org/10.1134/S2079562920010029

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)