Preview

Nuclear Physics and Engineering

Advanced search

Vacuum Chamber of the MEPhIST-1 Tokamak

https://doi.org/10.1134/S2079562920040181

Abstract

   One of the most important design elements of a tokamak is a vacuum discharge chamber, which has specific requirements related to the induction method of plasma generation and, accordingly, the presence of variable magnetic fields that additionally affect the chamber. In addition, the chamber should not only provide the possibility of creating and retaining current plasma in it, but also provide the possibility of diagnosing its parameters through the appropriate pipes. The small spherical tokamak is under construction at MEPhI, intended for both educational and research purposes, has an extensive program of such research, so the discharge chamber must not only quickly create a vacuum, withstand variable magnetic fields, but also be convenient for measuring. This paper describes design, calculations of mechanical stability and results of manufactured chamber tests.

About the Authors

G. M. Vorobyov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409; Kashirskoe sh. 31; Moscow



S. A. Krat
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409; Kashirskoe sh. 31; Moscow



V. D. Mironov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409; Kashirskoe sh. 31; Moscow



V. A. Kurnaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

115409; Kashirskoe sh. 31; Moscow



References

1. Kurnaev V.A. et al. // Phys. At. Nucl. 2019. V. 82. P. 1329−1331. doi: 10.1134/S1063778819100144

2. Курнаев В.А. и др. // Вестник НИЯУ МИФИ. 2019. Т. 8. № 6. 491–497.

3. Svoboda V. et al. // Fusion Eng. Des. 2016. V. 112. P. 1038–1044.

4. He Y.X. // Plasma Sci. Technol. 2002. V. 4. P. 1355.

5. Shiraiwa S. et al. // Proc. 26th EPS Conf. Maastricht, 14–18 June, 1999. Plasma Phys. 1999. V. 23J. P. 441.

6. Eidietis N.W. et al. // J. Fusion Energy. 2007. V. 26. P. 43.

7. Varandas C. et al. // Fusion Technology. 1996. V. 29. P. 105.

8. Gusev V.K. et al. // Nucl. Fusion. 2013. V. 53. P. 093013.

9. Minaev V.B. et al. // Nucl. Fusio. 2017. V. 57. P. 066047.

10. Harrison J.R. et al. // Nucl. Fusion. 2019. V. 59. P. 12011.

11. Menard J.E. et al. // Nucl. Fusion. 2017. V. 57. P. 1.

12. Gryaznevich M., Asunta O. // Fusion Eng. Des. 2017. V. 123. P. 177.

13. Агеев Н.П., Дворкин Н.Я., Миков В.В. Сферические токамаки. Технологические основы проектирования и изготовления высокоресурсных тонкостенных металлических оболочек вакуумных камер. 2003. СПб.: Изд-во “Мифрил”.

14. Лизин В.Т., Пяткин В.А. Проектирование тонкостенных конструкций. 2003. Москва: М.: Машиностроение, 2003.


Review

For citations:


Vorobyov G.M., Krat S.A., Mironov V.D., Kurnaev V.A. Vacuum Chamber of the MEPhIST-1 Tokamak. Nuclear Physics and Engineering. 2020;11(4):234-241. (In Russ.) https://doi.org/10.1134/S2079562920040181

Views: 59


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)