Influence of Ion Irradiation on the Structural Parameters of the Superconducting Layer of HTS Composites
https://doi.org/10.56304/S2079562923010013
Abstract
The effect of irradiation with Cu+ ions with an energy of E = 6.3 eV on the crystal structure and critical characteristics of high-temperature copper-based superconductors in the regime of radiation defect formation has been studied. The degradation of the superconducting properties, the growth of the lattice parameters and the magnitude of the relative stresses due to disorder along the c axis with increasing fluence up to the complete disappearance of the superconducting properties at the fluence F = 1.5 × 1014 cm–2 are shown.
About the Authors
D. A. AbinRussian Federation
Moscow, 115409
I. A. Rudnev
Russian Federation
Moscow, 115409; Kazan, 420008
A. S. Starikovskii
Russian Federation
Moscow, 115409
S. V. Pokrovskii
Russian Federation
Moscow, 115409; Kazan, 420008
S. V. Veselova
Russian Federation
Moscow, 115409; Kazan, 420008
M. A. Osipov
Russian Federation
Moscow, 115409
R. G. Batulin
Russian Federation
Kazan, 420008
A. G. Kiiamov
Russian Federation
Kazan, 420008
P. A. Fedin
Russian Federation
Moscow, 123182
K. E. Pryanishnikov
Russian Federation
Moscow, 123182
T. V. Kulevoy
Russian Federation
Moscow, 123182
References
1. Токонесущие ленты второго поколения на основе высокотемпературных сверхпроводников. Под ред. А. Гояла. 2009. Москва: Изд-во ЛКИ.
2. Umezawa A. et al. // Phys. Rev. B. 1987. T. 36 (13). P. 7151.
3. Kirk M.A. et al. // Philos. Mag. Lett. 1990. V. 62 (1). P. 41–49.
4. Atobe K. et al. // J. Nucl. Sci. Technol. 1988. T. 25 (4). P. 410–412.
5. Trappeniers L. et al. // Phys. C. 1999. V. 313 (1–2). P. 1–10.
6. Paulius L. et al. // Phys. Rev. B. 1997. V. 56 (2). P. 913–924.
7. Fuger R. et al. // Phys. C (Amsterdam, Neth.). 2008. V. 468 (15–20). P. 1647–1651.
8. Eisterer M. et al. // Supercond. Sci. Technol. 2010. V. 23 (1). P. 014009.
9. Konopleva R.F. et al. // Phys. Solid State. 1998. V. 40. P. 1777–1782.
10. Sandu V. et al. // Roman. J. Phys. 2006. V. 51 (5/6). P. 611.
11. Kulikov D.V. et al. // Phys. C (Amsterdam, Neth.). 2001. V. 355 (3–4). P. 245–250.
12. Fischer D.X. et al. // Supercond. Sci. Technol. 2018. V. 31 (4). P. 044006.
13. Prokopec R. et al. // Supercond. Sci. Technol. 2015. V. 28 (1). P. 14005.
14. Leonard K.J. et al. // Nucl. Mater. Energy. 2016. V. 9. P. 251–255.
15. Chudy M. et al. // IEEE Trans. Appl. Supercond. 2011. V. 21 (3). P. 3162–3165.
16. Jirsa M. et al. // Supercond. Sci. Technol. 2017. V. 30 (4). P. 045010.
17. Viswanathan H.K. et al. Preprint ANL/MSD/PP-82087. 1994. Argonne, IL: Argonne Natl. Lab.
18. Giapintzakis J. et al. // Phys. Rev. B. 1992. V. 45 (18). P. 10677.
19. Hasan M.K. et al. // Supercond. Sci. Technol. 1999. V. 12 (9). P. 606.
20. Civale L. et al. // Phys. Rev. Lett. 1991. V. 67 (5). P. 648.
21. Civale L. et al. // Phys. Rev. Lett. 1990. V. 65 (9). P. 1164.
22. Kirk M.A., Yan Y. // Micron. 1999. V. 30 (5). P. 507–526.
23. Haberkorn N. et al. // Phys. C (Amsterdam, Neth.). 2017. V. 542. P. 6–11.
24. Leroux M. et al. // Appl. Phys. Lett. 2015. V. 107 (19). P. 192601.
25. Eley S. et al. // Supercond. Sci. Technol. 2016. V. 30 (1). P. 015010.
26. Haberkorn N. et al. // Solid State Commun. 2019. V.289. P. 51–55.
27. Sadovskyy I., Koshelev A., Glatz A. // APS March Meeting Abstr. 2015. V. 2015. P. J11.012.
28. Troitskii A.V. et al. // J. Surf. Investig. 2016. V. 10 (2). P. 381–392.
29. Suvorova E.I. et al. // Acta Mater. 2014. V. 75. P. 71–79.
30. Antonova L.K. et al. // Phys. Met. Metallogr. 2013. V. 114 (2). P. 145–147.
31. Antonova L. et al. // Phys. Status Solidi Basic Res. 2019. V. 256 (5). P. 2–5.
32. Троицкий А.В. и др. // Перспективные материалы. 2021. № 3. С. 5–20.
33. Troitskii A.V. et al. // Phys. C (Amsterdam, Neth.). 2020. V. 572. P. 1353631.
34. Rudnev I. et al. // IEEE Trans. Appl. Supercond. 2022. V. 32 (4). P. 5.
35. Руднев И.А., Подливаев А.И., Абин Д.А., Покровский С.В., Стариковский А.С., Батулин Р.Г., Федин П.А., Прянишников К.Е., Кулевой Т.В. // Физика твердого тела. 2023. Т. 65 (3). С. 386–396.
36. Fedin P.A. et al. // Phys. At. Nucl. 2022. V. 85 (Suppl. 2). P. S50–S54.
37. http://srim.org/.
38. Амиров Р.Р. и др. // Уч. записки Казанского унив. Сер. естеств. науки. 2023. Т. 165 (1). С. 5–22. https://doi.org/10.26907/2542-064X.2023.1.5-22
39. Chauhan A., Chauhan P. // J. Anal. Bioanal. Tech. 2014. V. 5 (5). P. 1–5.
40. Kamiya Y., Ishiyama A., Yagi M., Maruyama O., Ohkuma T. // IEEE Trans. Appl. Supercond. 2012. V. 22. P. 5801004.
41. Abraimov D., Gurevich A., Polyanskii A., Cai X.Y., Xu A., Pamidi S., Larbalestier D., Thieme C.L.H. // Supercond. Sci. Technol. 2008. V. 21. P. 082004.
42. Rudnev I., Osipov M. // J. Supercond. Nov. Magn. 2014. V. 27. P. 951–954.
43. Fuger R., Hengstberger F., Eisterer M., Weber H.W. // IEEE Trans. Appl. Supercond. 2007. V. 17 (2). P. 3753–3756.
44. Higashikawa K., Shiohara K. // IEEE Trans. Appl. Supercond. 2012. V. 22 (3). P. 5–8.
Review
For citations:
Abin D.A., Rudnev I.A., Starikovskii A.S., Pokrovskii S.V., Veselova S.V., Osipov M.A., Batulin R.G., Kiiamov A.G., Fedin P.A., Pryanishnikov K.E., Kulevoy T.V. Influence of Ion Irradiation on the Structural Parameters of the Superconducting Layer of HTS Composites. Nuclear Physics and Engineering. 2023;14(6):541-549. (In Russ.) https://doi.org/10.56304/S2079562923010013