Atom-Probe Tomography Study of the Influence of Fe Ion Irradiation at 500°C on the Nanostructure of Oxide Dispersion-Strengthened Steels
https://doi.org/10.56304/S2079562923010219
Abstract
In this work, the radiation stability of the nanostructure of ODS steels is studied by atom-probe tomography. Studied steels Eurofer ODS, 10Cr ODS, and KP-3 ODS differ in alloying system. The chromium content in these steels varies from 9 to 14 at. %, and also V, Ti, Al, W and Mn are present in varying amounts. Atom-probe tomography revealed nanoclusters enriched in Y, O and Cr as well as in V, Ti and Al in the initial state of these steels depending on the alloying system. Study of radiation-induced changes in the nanostructure of ODS steels under Fe ion irradiation to a dose of 100 dpa at 500°C showed that the average size of clusters under the irradiation remained stable. However, there was a significant increase in their number density (by ~2 times) in 10Cr ODS and KP-3 ODS steels, while the clusters number density in Eurofer ODS decreased greatly (by ~3.5 times). Clusters in irradiated steels were enriched in Y, O, Cr. They were also enriched in Ti when it was present in the initial composition. In the irradiated materials, the clusters were not enriched in V and Al. In 10Cr ODS and KP-3 ODS steels, there was a significant increase in Cr, O, and Y enrichment and decrease in Ti enrichment. However, a strong decrease in O enrichment was observed in Eurofer ODS steel. The detected changes in number density and cluster composition were presumably related to the mechanisms of cluster interaction with larger oxide particles.
About the Authors
S. V. RogozhkinRussian Federation
Moscow, 123182
A. V. Klauz
Russian Federation
Moscow, 123182
A. A. Bogachev
Russian Federation
Moscow, 123182
A. A. Khomich
Russian Federation
Moscow, 123182
P. A. Fedin
Russian Federation
Moscow, 123182
O. A. Raznitsyn
Russian Federation
Moscow, 123182
References
1. Yvon P., Carre F. // J. Nucl. Mater. 2009. V. 385. P. 217. https://doi.org/10.1134/S1063778822120018
2. Klueh R.L., Shingledecker J.P., Swindeman R.W., Hoelzer D.T. // J. Nucl. Mater. 2005. V. 341. P. 103. https://doi.org/10.1016/j.jnucmat.2005.01.017
3. Ukai S., Okuda T., Fujiwara M., Kobayashi T., Mizuta S., Nakashima H. // J. Nucl. Sci. Technol. 2002. V. 39. P. 872. https://doi.org/10.1080/18811248.2002.9715271
4. Hoelzer D.T., Bentley J., Sokolov M.A., Miller M.K., Odette G.R., Alinger M.J. // J. Nucl. Mater. 2007. V. 367–370. P. 166. https://doi.org/10.1016/j.jnucmat.2007.03.151
5. Wharry J.P., Swenson M.J., Yano K.H. // J. Nucl. Mater. 2017. V. 486. P. 11. https://doi.org/10.1016/j.jnucmat.2017.01.009
6. Liu X., Miao Y., Wu Y., Maloy S.A., Stubbins J.F. // Scripta Mater. 2017. V. 138. P. 57. https://doi.org/10.1016/j.scriptamat.2017.05.023
7. Rogozhkin S., Bogachev A., Korchuganova O., Nikitin A., Orlov N., Aleev A., Zaluzhnyi A., Kozodaev M., Kulevoy T., Chalykh B., Lindau R., Möslang A., Vladimirov P., Klimenkov M., Heilmaier M., Wagner J., Seils S. // Nucl. Mat. Energy. 2016. V. 9. P. 66. https://doi.org/10.1016/j.nme.2016.06.011
8. Ukai S., Fujiwara M. // J. Nucl. Mater. 2002. V. 307–311. P. 749. https://doi.org/10.1016/S0022-3115(02)010
9. Carlan Y., Bechade J.-L., Dubuisson P., Seran J.-L., Billot P., Bougault A., Cozzika T., Doriot S., Hamon D., Henry J., Ratti M., Lochet N., Nunes D., Olier P., Leblond T., Mathon M.H. // J. Nucl. Mater. 2009. V. 386–388. P. 430. https://doi.org/10.1016/j.jnucmat.2008.12.156
10. Mateus R., Carvalho P.A., Nunes D., Alves L.C., Franco N., Correia J.B., Alves E. // Fus. Eng. Des. 2011. V. 86. P. 2386. https://doi.org/10.1016/j.fusengdes.2011.01.011
11. Jeong Y.H., Kim W.J., Kim D.J., Jang J., Kang S.H., Chun Y.-B., Kim T.K. // Proc. Eng. 2014. V. 86. P. 1. https://doi.org/10.1016/j.proeng.2014.11.004
12. Kimura A., Cho H.-S., Toda N., Kasada R., Yutani K., Kishimoto H., Iwata N., Ukai S., Fujiwara M. // J. Nucl. Sci. Technol. 2007. V. 44 (3). P. 323. https://doi.org/10.1080/18811248.2007.9711289
13. Rogozhkin S.V., Khomich A.A., Bogachev A.A. et al. // Phys. At. Nucl. 2020. V. 83. P. 1425–1433. https://doi.org/10.1134/S1063778820100191
14. Rogozhkin, S.V., Khomich, A.A., Bogachev, A.A. et al. // Phys. At. Nucl. 2020. V. 83. P. 1519–1528. https://doi.org/10.1134/S1063778820100208
15. Rogozhkin S.V., Klauz A.V., Bogachev A.A., Khomich A.A., Fedin P.A., and Raznitsyn O.A. // Phys. At. Nucl. 2022. V. 85 (12). P. 1998–2006. https://doi.org/10.1134/S1063778822120018
16. Rogozhkin S.V., Aleev A.A., Lukyanchuk A.A., Shutov A.S., Raznitsyn O.A., Kirillov S.E. // Instrum. Exp. Tech. 2017. V. 60. P. 428. https://doi.org/10.1134/S002044121702021X
17. Raznitsyn O.A., Lukyanchuk A.A., Shutov A.S., Rogozhkin S.V., Aleev A.A. // J. Anal. Chem. 2017. V. 72 (14). P. 1404. https://doi.org/10.1134/S1061934817140118
18. Алеев A.А., Рогожкин С.В., Лукьянчук А.А., Шутов А.С., Разницын О.А., Никитин А.А., Искандаров Н.А., Корчуганова О.А., Кириллов С.Е. Свидетельство о государственной регистрации программы для ЭВМ № 2018661876 (20.09.2018).
19. Miller M.K. Atom Probe Tomography: Analysis at the Atomic Level. 2000. New York: Kluwer Academic. https://doi.org/10.1046/j.1365-2818.2001.00847.x
20. Rogozhkin S.V., Bogachev A.A., Nikitin A.A., Vasiliev A.L., Presnyakov M.Yu., Tomut M., Trautmann Ch. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2021. V. 486. P. 1–10. https://doi.org/10.1016/j.nimb.2020.10.017
Review
For citations:
Rogozhkin S.V., Klauz A.V., Bogachev A.A., Khomich A.A., Fedin P.A., Raznitsyn O.A. Atom-Probe Tomography Study of the Influence of Fe Ion Irradiation at 500°C on the Nanostructure of Oxide Dispersion-Strengthened Steels. Nuclear Physics and Engineering. 2023;14(6):530-540. (In Russ.) https://doi.org/10.56304/S2079562923010219