Preview

Nuclear Physics and Engineering

Advanced search

Phase Diagram of Quantum Chromodynamics in the Temperature–Baryon Density–Magnetic Field Parameter Space

https://doi.org/10.1134/S2079562920040077

Abstract

   The phase diagram of quantum chromodynamics under different external parameters, such as temperature, baryon density, and magnetic field strength is investigated by means of lattice simulations. Calculations are perfomed with three light quarks and imaginary chemical potential. For real values of chemical potential , the results are obtained by means of analytical continuation. Using renormalised chiral condensate and Polyakov loop, we determine the position (critical temperature) and width of the confinement−deconfinement and chiral symmetry breaking−restoration phase transitions as functions of magnetic field and baryon density.

About the Authors

A. Yu. Kotov
Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”
Russian Federation

117218; B. Cheremushkinskaya st. 25; Moscow



A. A. Nikolaev
Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”; Department of Physics, College of Science, Swansea University
Russian Federation

Department of Physics

117218; B. Cheremushkinskaya st. 25; Moscow; United Kingdom; Swansea SA2 8PP 



References

1. Heinz U.W., Jacob M. // arXiv:nucl-th/0002042. 2000.

2. Gyulassy M., McLerran L. // Nucl. Phys. A. 2005. V. 750. P. 30.

3. Busza W., Rajagopal K., van der Schee W. // Ann. Rev. Nucl. Part. Sci. 2018. V. 68. P. 339.

4. Skokov V., Illarionov A.Yu., Toneev V. // Int. J. Mod. Phys. A. 2009. V. 24. P. 5925.

5. Montvay I., Munster G. Quantum Fields on a Lattice. Cambridge Monographs on Mathematical Physics. 1997. Cambridge: Cambridge Univ. Press.

6. Steinbrecher P. // Nucl. Phys. A. 2019. V. 982. P. 847.

7. Bellwied R., Borsanyi S., Fodor Z., Gьnther J., Katz S.D., Ratti C., Szabo K.K. // Phys. Lett. B. 2015. V. 751. P. 559.

8. Bonati C., D’Elia M., Negro F., Sanfilippo F., Zambello K. // Phys. Rev. D. 2018. V. 98. P. 054510.

9. Bali G.S., Bruckmann F., Endrodi G., Fodor Z., Katz S.D., Krieg S., Schafer A., Szabo K.K. // J. High Energy Phys. 2012. V. 1202. P. 044.

10. Muroya Sh., Nakamura A., Nonaka Ch., Takaishi T. // Prog. Theor. Phys. 2003. V. 110. P. 615.

11. Morningstar C., Peardon M.J. // Phys. Rev. D. 2004. V. 69. P. 054501.

12. Ilgenfritz E.M., Kalinowski M., Muller-Preussker M., Petersson B., Schreiber A. // Phys. Rev. D. 2012. V. 85. P. 114504.

13. Clark M.A. // PoS (LAT2006). 2006. P. 004.

14. Borsanyi S., Endrodi G., Fodor Z., Jakovac A., Katz S.D., Krieg S., Ratti C., Szabo K.K. // J. High Energy Phys. 2010. V. 1011. P. 077.

15. Weber J.H. // Mod. Phys. Lett. A. 2016. V. 31. P. 1630040.


Review

For citations:


Kotov A.Yu., Nikolaev A.A. Phase Diagram of Quantum Chromodynamics in the Temperature–Baryon Density–Magnetic Field Parameter Space. Nuclear Physics and Engineering. 2020;11(4):212-215. (In Russ.) https://doi.org/10.1134/S2079562920040077

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)