Modernization and Methods of Maintaining the Operating Mode of the OGRAN (Optoacoustic Gravity Antenna) Setup
https://doi.org/10.1134/S2079562920010157
Abstract
An upgraded version of the combined optoacoustic gravitational radiation detector OGRAN is considered. This underground setup located at the Baksan Neutrino Observatory is designed to search for collapsing stars in the Galaxy in conjunction with the neutrino telescope BUST. Both instruments possess the sensitivity sufficient for registering collapses in our Galaxy as rare events with an average rate of 0.03 events per year. Observations are carried out in the form of continuous synchronous monitoring of the astrophysical background through both recording channels. Strict requirements are imposed on the systems for maintaining the operating modes of both installations. For the gravity detector, the problem is nontrivial owing to the complexity of its utomatic control systems and fine-tuning of the operating point. For this reason, the method and technique for maintaining the OGRAN detector in monitoring mode is described in detail. Also, the characteristics of the OGRAN detector after modernization are briefly presented.
About the Authors
V. N. RudenkoRussian Federation
Moscow, 119992
Moscow, 117312
N. L. Kvashnin
Russian Federation
Novosibirsk, 630090
A. A. Lugovoi
Russian Federation
Novosibirsk, 630090
S. I. Oreshkin
Russian Federation
Moscow, 119992
Moscow, 117312
S. M. Popov
Russian Federation
Moscow, 119992
A. A. Samoylenko
Russian Federation
Moscow, 119992
M. N. Skvortsov
Russian Federation
Novosibirsk, 630090
I. S. Yudin
Russian Federation
Moscow, 119992
References
1. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2016. V. 116. P. 061102.
2. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2016. V. 116. P. 241103.
3. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2017. V. 118. P. 221101.
4. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2017. V. 119. P. 141101.
5. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2017. V. 119. P. 161101.
6. Rudenko V.N. // Phys. Usp. 2017. V. 60. P. 830. https://doi.org/10.3367/UFNe.2016.11.038088
7. Bagaev S.N. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 114.
8. Bagaev S.N., Bezrukov L.B., Kvashnin N.L., et al. // Instrum. Exp. Tech. 2015. V. 58. P. 257.
9. Kulagin V.V., Polnarev A.G., and Rudenko V.N. // Sov. Phys. JETP. 1977. V. 20. P. 319.
10. Bichak I., Rudenko V.N. Gravitatsionnyye volny v OTO i problema ikh obnaruzheniya [Gravitational Waves in GR and the Problem of Their Detection]. 1987. Mos-cow: MGU (in Russian).
11. Zhang W. et al. // Opt. Lett. 2014. V. 39. P. 1980.
12. Astone P. et al. (IGEC-2 Collab.) // Phys. Rev. D. 2007. V. 76. P. 102001.
13. Kulagin V.V. et al. // Phys. At. Nucl. 2016. V. 79. P. 1552. https://doi.org/10.1134/S1063778816130056; Yad. Fiz. Inzhin. 2016. V. 7. P. 59. https://doi.org/10.1134/S2079562916010061
14. Kvashnin N.N. et al. // Phys. At. Nucl. 2017. V. 80. P. 1606. https://doi.org/10.1134/S1063778817100039; Yad. Fiz. Inzhin. 2016. V. 7. P. 535 (2016). https://doi.org/10.1134/S2079562916060038
15. Aglietta M. et al. // Europhys. Lett. 1987. V. 3. P. 1321.
16. Alexeyev E.N. et al. // Phys. Lett. B. 1988. V. 205. P. 209.
17. Hirata K.S. et al. // Phys. Rev. D. 1988. V. 38. P. 448.
18. Dickson C.A., Schutz B.F. // Phys. Rev. D. 1995. V. 51. P. 2644.
19. Rudenko V.N. et al. // J. Exp. Theor. Phys. 2000. V. 91. P. 845. https://doi.org/10.1134/1.1334976
20. Mayle R., Wilson J. R., and Schramm D. N. // Astrophys. J. 1987. V. 318. P. 288.
21. Melson T. et al. // Astrophys. J. 2015. V. 808. P. L42.
22. Bisnovatyi-Kogan G.S. and Moiseenko S.G. // Phys. Usp. 2017. V. 60. P. 843. https://doi.org/10.3367/UFNe.2016.11.038112
Review
For citations:
Rudenko V.N., Kvashnin N.L., Lugovoi A.A., Oreshkin S.I., Popov S.M., Samoylenko A.A., Skvortsov M.N., Yudin I.S. Modernization and Methods of Maintaining the Operating Mode of the OGRAN (Optoacoustic Gravity Antenna) Setup. Nuclear Physics and Engineering. 2020;11(3):152-161. (In Russ.) https://doi.org/10.1134/S2079562920010157