Preview

Nuclear Physics and Engineering

Advanced search

Modernization and Methods of Maintaining the Operating Mode of the OGRAN (Optoacoustic Gravity Antenna) Setup

https://doi.org/10.1134/S2079562920010157

Abstract

An upgraded version of the combined optoacoustic gravitational radiation detector OGRAN is considered. This underground setup located at the Baksan Neutrino Observatory is designed to search for collapsing stars in the Galaxy in conjunction with the neutrino telescope BUST. Both instruments possess the sensitivity sufficient for registering collapses in our Galaxy as rare events with an average rate of 0.03 events per year. Observations are carried out in the form of continuous synchronous monitoring of the astrophysical background through both recording channels. Strict requirements are imposed on the systems for maintaining the operating modes of both installations. For the gravity detector, the problem is nontrivial owing to the complexity of its utomatic control systems and fine-tuning of the operating point. For this reason, the method and technique for maintaining the OGRAN detector in monitoring mode is described in detail. Also, the characteristics of the OGRAN detector after modernization are briefly presented.

About the Authors

V. N. Rudenko
Sternberg Astronomical Institute, Moscow State University; Institute for Nuclear Research, Russian Academy of Sciences
Russian Federation

Moscow, 119992

Moscow, 117312



N. L. Kvashnin
Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences
Russian Federation

Novosibirsk, 630090



A. A. Lugovoi
Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences
Russian Federation

Novosibirsk, 630090



S. I. Oreshkin
Sternberg Astronomical Institute, Moscow State University; Institute for Nuclear Research, Russian Academy of Sciences
Russian Federation

Moscow, 119992

Moscow, 117312



S. M. Popov
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119992



A. A. Samoylenko
Sternberg Astronomical Institute, Moscow State University
Russian Federation

Moscow, 119992



M. N. Skvortsov
Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences
Russian Federation

Novosibirsk, 630090



I. S. Yudin
Sternberg Astronomical Institute, Moscow State University
Russian Federation

 Moscow, 119992



References

1. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2016. V. 116. P. 061102.

2. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2016. V. 116. P. 241103.

3. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2017. V. 118. P. 221101.

4. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2017. V. 119. P. 141101.

5. Abbott B.P., Abbott R., Abbott T.D. et al. (LIGO Collab. and Virgo Collab.) // Phys. Rev. Lett. 2017. V. 119. P. 161101.

6. Rudenko V.N. // Phys. Usp. 2017. V. 60. P. 830. https://doi.org/10.3367/UFNe.2016.11.038088

7. Bagaev S.N. et al. // Rev. Sci. Instrum. 2014. V. 85. P. 114.

8. Bagaev S.N., Bezrukov L.B., Kvashnin N.L., et al. // Instrum. Exp. Tech. 2015. V. 58. P. 257.

9. Kulagin V.V., Polnarev A.G., and Rudenko V.N. // Sov. Phys. JETP. 1977. V. 20. P. 319.

10. Bichak I., Rudenko V.N. Gravitatsionnyye volny v OTO i problema ikh obnaruzheniya [Gravitational Waves in GR and the Problem of Their Detection]. 1987. Mos-cow: MGU (in Russian).

11. Zhang W. et al. // Opt. Lett. 2014. V. 39. P. 1980.

12. Astone P. et al. (IGEC-2 Collab.) // Phys. Rev. D. 2007. V. 76. P. 102001.

13. Kulagin V.V. et al. // Phys. At. Nucl. 2016. V. 79. P. 1552. https://doi.org/10.1134/S1063778816130056; Yad. Fiz. Inzhin. 2016. V. 7. P. 59. https://doi.org/10.1134/S2079562916010061

14. Kvashnin N.N. et al. // Phys. At. Nucl. 2017. V. 80. P. 1606. https://doi.org/10.1134/S1063778817100039; Yad. Fiz. Inzhin. 2016. V. 7. P. 535 (2016). https://doi.org/10.1134/S2079562916060038

15. Aglietta M. et al. // Europhys. Lett. 1987. V. 3. P. 1321.

16. Alexeyev E.N. et al. // Phys. Lett. B. 1988. V. 205. P. 209.

17. Hirata K.S. et al. // Phys. Rev. D. 1988. V. 38. P. 448.

18. Dickson C.A., Schutz B.F. // Phys. Rev. D. 1995. V. 51. P. 2644.

19. Rudenko V.N. et al. // J. Exp. Theor. Phys. 2000. V. 91. P. 845. https://doi.org/10.1134/1.1334976

20. Mayle R., Wilson J. R., and Schramm D. N. // Astrophys. J. 1987. V. 318. P. 288.

21. Melson T. et al. // Astrophys. J. 2015. V. 808. P. L42.

22. Bisnovatyi-Kogan G.S. and Moiseenko S.G. // Phys. Usp. 2017. V. 60. P. 843. https://doi.org/10.3367/UFNe.2016.11.038112


Review

For citations:


Rudenko V.N., Kvashnin N.L., Lugovoi A.A., Oreshkin S.I., Popov S.M., Samoylenko A.A., Skvortsov M.N., Yudin I.S. Modernization and Methods of Maintaining the Operating Mode of the OGRAN (Optoacoustic Gravity Antenna) Setup. Nuclear Physics and Engineering. 2020;11(3):152-161. (In Russ.) https://doi.org/10.1134/S2079562920010157

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)