On the Possibility of Surface Analysis by keV-Energy Proton Scattering in Magnetic Fusion Devices
https://doi.org/10.1134/S2079562920040107
Abstract
Erosion and redeposition processes of plasma-facing materials in fusion devices are the essential factors affecting near-wall and core plasma parameters and device lifetime. To determine the possibility of in situ analyzing these processes we developed the experimental model of built-in surface analyzer utilizing low-energy proton scattering spectroscopy. We present the results of experimental approbation of the proposed method. The processes of erosion and redeposition of plasma-facing materials in fusion devices are some of the most important factors affecting the plasma parameters and the resource of the first wall. The method of analyzing thin layers on a surface using keV-energy proton scattering expands the functionality of determining the rate of erosion and deposition of layers with a large atomic number on a substrate from a light element, or, conversely, light layers on a heavy substrate, which is typical for modern fusion installations. The analysis of deposition and/or erosion consists in placing special marker targets with layers of material with a low atomic number and/or material with a large atomic number in the places of the installation in which it is supposed to study the rate of erosion and/or deposition, with the subsequent analysis of energy spectra of hydrogen ions reflected from exposed targets with energies in the kiloelectron-volt range. In this paper, estimates of the applicability of this technique directly in a fusion device are given, considering the characteristic parameters of the near-wall plasma.
About the Authors
V. A. KurnaevRussian Federation
115409; Moscow
D. G. Bulgadaryan
Russian Federation
115409; Moscow
D. N. Sinelnikov
Russian Federation
115409; Moscow
References
1. Philipps V., Wienhold P., Kirschner A., Rubel M. // Vacuum . 2002. V. 67. P. 399.
2. Naujoks D., Behrisch R. // J. Nucl. Mater. 1995. V. 220−222. P. 227.
3. Bulgadaryan D., Kolodko D., Kurnaev V., Sinelnikov D. // J. Phys.: Conf. Ser. 2016. V. 748. P. 012016.
4. Bulgadaryan D., Kurnaev V., Sinelnikov D., Efimov N. // J. Phys.: Conf. Ser . 2018. V. 941. P. 012022.
5. Bulgadaryan D., Sinelnikov D., Kurnaev V., Efimov N., Borisyuk P., Lebedinskii Y. // Nucl. Instrum. Methods Phys. Res B., Sect. B. 2019. V. 438. P. 54.
6. Bulgadaryan D.G., Sinelnikov D.N., Efimov N.E., Kurnaev V.A. // Bull. Russ. Acad. Sci.: Phys., Sect. B. 2020. V. 84. P. 742.
7. Bulgadaryan D.G., Sinelnikov D.N., Sorokin I.A., Kurnaev V.A., Efimov N.E. // Phys. At. Nucl. 2019. V. 82. P. 1364
8. Курнаев В.А., Протасов Ю.С., Цветков И.В. // Введение в пучковую электронику. 2008. Москва: Тровант.
9. Koborov N.N. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 1997. V. 129. P. 5.
10. Смирнов Б.М. // Физическая энциклопедия (в 5-ти томах). Гл. ред. Прохоров А.М. 1988. Москва: Советская энциклопедия.
11. Stangeby P.C. // Nucl. Fusion. 2012. V. 52. P. 083012.
12. Kurnaev V.A., Tatarinova N.V. // J. Nucl. Mater. 1995. V. 220−222. P. 939.
13. Borodkina I., Borodin D., Kirschner A., Tsvetkov I.V., Kurnaev V.A., Komm M., Dejarnac R., JET Contributors // Contrib. Plasma Phys. 2016. V. 56. P. 640.
14. Wiesen S., Brezinsek S., Wischmeier M., la Luna E.D., Groth M., Jaervinen A.E., de la Cal E., Losada U., de Aguilera A.M., Frassinetti L., Gao Y., Guillemaut C., Harting D., Meigs A., Schmid K., Sergienko G., JET Contributors // Nucl. Fusion. 2017. V. 57. P. 066024.
Review
For citations:
Kurnaev V.A., Bulgadaryan D.G., Sinelnikov D.N. On the Possibility of Surface Analysis by keV-Energy Proton Scattering in Magnetic Fusion Devices. Nuclear Physics and Engineering. 2020;11(4):202-207. (In Russ.) https://doi.org/10.1134/S2079562920040107