STUDY OF NONEQUILIBRIUM PHOTOEXCITED STATES IN HTSC COMPOSITES USING ULTRAFAST LASER SPECTROSCOPY
https://doi.org/10.56304/S207956292506017X
EDN: ZCQUJB
Abstract
The superfast photoinduced dynamics of the reflection coefficient of superconducting composites based on layered REBCO (RE = Y) cuprates on a Hastelloy C-276 substrate has been studied in the temperature range of 5–200 K. It has been shown the ultrafast responses of the reflection coefficient to the excitation by femtosecond light pulses contain components caused by the normal and superconducting subsystems. The contribution from the normal component has a shorter relaxation time of ~0.2 ps, and its amplitude is proportional to the pump energy density in a wide range. The response of the superconducting component observed below Tc = 92 K has a longer relaxation time of ~2.5 ps, and the dependence of the amplitude on the pump energy density has a bend at ~14 μJ/cm2. The temperature dependence of the response amplitude of the superconducting component corresponds to predictions of the phenomenological Rothwarf–Taylor model. According to the ultrafast laser spectroscopy data, the properties of thin-film YBa2Cu3O7–x-based composites are very close to the properties of single crystals of these compounds
About the Authors
I. V. MartirosyanRussian Federation
S. V. Pokrovskii
Russian Federation
A. V. Petrov
Russian Federation
R. V. Yusupov
Russian Federation
References
1. Testardi L.R. // Phys. Rev. B. 1971. V. 4 (7). P. 2189–2196.
2. Han S.G. et al. // Phys. Rev. Lett. 1990. V. 65 (21). P. 2708–2711.
3. Chwalek J.M. et al. // Appl. Phys. Lett. 1991. V. 58 (9). P. 980–982.
4. Albrecht W., Kruse T., Kurz H. // Phys. Rev. Lett. 1992. V. 69 (9). P. 1451–1454.
5. Dvorsek D. et al. // Phys. Rev. B. 2002. V. 66 (2). P. 020510.
6. Kusar P. et al. // Phys. Rev. Lett. 2008. V. 101 (22). P. 227001.
7. Giannetti C. et al. //. 2008.
8. Fugol I. et al. // Solid State Commun. 1991. V. 80 (3). P. 201–206.
9. Dewing H.L., Salje E.K.H. // Supercon. Sci. Technol. 1992. V. 5 (2). P. 50.
10. Rüscher C.H., Götte M. // Solid State Commun. 1993. V. 85 (5). P. 393–396.
11. Rothwarf A., Taylor B.N. // Phys. Rev. Lett. 1967. V. 19 (1). P. 27–30.
12. Kabanov V.V., Demsar J., Mihailovic D. // Phys. Rev. Lett. 2005. V. 95 (14). P. 147002.
13. Demsar J. et al. // Phys. Rev. Lett. 2003. V. 91 (26). P. 267002.
14. Geibel C. et al. // J. Phys. F: Met. Phys. 1985. V. 15 (2). P. 405.
15. Bardeen J., Cooper L.N., Schrieffer J.R. // Phys. Rev. 1957. V. 108 (5). P. 1175–1204.
16. Springer D. et al. // Phys. Rev. B. 2016. V. 93 (6). P. 064510.
17. Stojchevska L. et al. // Phys. Rev. B. 2011. V. 84 (18). P. 180507.
18. Kabanov V.V., Demsar J., Podobnik B., Mihailovic D. // Phys. Rev. B. 1999. V. 59 (2). P. 1497.
19. Stevens C.J. et al. // Phys. Rev. Lett. 1997. V. 78 (11). P. 2212.
20. Rothwarf A., Taylor B.N. // Phys. Rev. Lett. 1967. V. 19 (1). P. 27.
21. Mattis D.C., Bardeen J. // Phys. Rev. B. 1958. V. 111 (2). P. 412–417.
22. Mertelj T. et al. // Phys. Rev. Lett. 2009. V. 102 (11). P. 117002.
23. Loram W., Mirza K.A. // Phys. C (Amsterdam, Neth.). 1988. V. 153–155. P. 1020–1021.
24. Katsumi K. et al. // Phys. Rev. B. 2023. V. 107 (21). P. 214506.
25. Luo C.-W. et al. // J. Low Temp. Phys. 2003. V. 131. P. 767–774.
26. Wald H., Seidel P., Tonouchi M. // Phys. C (Amsterdam, Neth.). 2002. V. 367 (1–4). P. 308–316.
Review
For citations:
Martirosyan I.V., Pokrovskii S.V., Petrov A.V., Yusupov R.V. STUDY OF NONEQUILIBRIUM PHOTOEXCITED STATES IN HTSC COMPOSITES USING ULTRAFAST LASER SPECTROSCOPY. Nuclear Physics and Engineering. 2025;16(6):922-928. (In Russ.) https://doi.org/10.56304/S207956292506017X. EDN: ZCQUJB
JATS XML