Preview

Nuclear Physics and Engineering

Advanced search

OBSERVATION OF GAMMA-RAY NUCLEAR TRANSITIONS OF EXCITED NUCLEI PRODUCED IN HADRON–NUCLEAR INTERACTIONS IN THE HYPERON+ EXPERIMENT

https://doi.org/10.56304/S2079562925060089

EDN: FNHXPY

Abstract

Possible products of hadron–nuclear interactions in a hadron beam at energies of of 5–10 GeV are secondary excited nuclei. During transitions from the excited state to the ground or another excited state, such nuclei emit photons with megaelectronvolt energies corresponding to the difference in the levels of the excitation transition of the nuclei. The energy spectra of deexcitation photons are the characteristic features of the excited nuclei. Therefore, the detection of these photons of gamma-ray nuclear transitions makes it possible to identify the nuclei formed in the final state of such a reaction. In turn, the correlation of the excitation spectra of secondary nuclei with the type and parameters of hadron systems emitted in the forward hemisphere of the reaction provides information on the dynamics of hadron–nuclear interactions. The first results of measuring the spectra of gamma-ray nuclear transitions in the Hyperon+ experiment in a test run using a set of statistics on hadron–nuclear interactions with a momentum of 7 GeV/c on a 12C carbon target by means of the gamma nuclear transition (GNT) spectrometer have been reported in this work. The obtained data can be interpreted as an observation of a series of gamma transitions of 11C nuclei produced in the final state of events selected with the trigger for the interaction of the beam particles with the target

About the Authors

A. M. Gorin
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


S. V. Evdokimov
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


A. A. Zaitsev
Joint Institute for Nuclear Research
Russian Federation


V. I. Izucheev
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


D. S. Krinitsyn
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


B. V. Polishchuk
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


V. I. Rykalin
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


S. A. Sadovsky
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


Yu. V. Kharlov
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


A. A. Shangaraev
Institute for High Energy Physics, National Research Centre “Kurchatov Institute”
Russian Federation


References

1. Горин А.М., Евдокимов С.В., Зайцев А.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87 (8). С. 1109.

2. Черный С.А. // Физика элементарных частиц и атомного ядра. 1991. Т. 22 (5). С. 1067–1128.

3. Асеев А.А., Боголюбский М.Ю., Викторов В.А. и др. (Коллаборация Гиперон-М). Препринт ИФВЭ 2002-3. 2002. Протвино: ИФВЭ.

4. Боголюбский М.Ю., Евдокимов С.В., Изучеев В.И. и др.// Ядерная физика. 2013. Т. 76 (11). С. 1389–1403.

5. Евдокимов С.В., Изучеев В.И., Кондратюк Е.С. и др. // Письма ЖЭТФ. 2021. Т. 113 (5). С. 291–298.

6. Горин А.М., Евдокимов С.В., Зайцев А.А. и др. // Письма ЖЭТФ. 2023. Т. 118 (9). С. 629–636.

7. Shamsuzzoha Basunia M. // Nucl. Data Sheets. 2015. V. 127. P. 69–190.

8. Горин А.М., Евдокимов С.В., Зайцев А.А. и др. // Ядер. физ. инжинир. 2024. Т. 15 (6). С. 590–598.

9. Groves J.L. et al. // Phys. Rev. D. 1977. V. 15 (1). P. 47–58.

10. Agostinelli S. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2003. V. 506. P. 250–303.

11. Allison J. et al. // IEEE Trans. Nucl. Sci. 2006. V. 53. P. 270–278.

12. Allison J. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2016. V. 835. P. 186–22.

13. Hřivnáčová I. et al. The Virtual MonteCarlo. ECONF C0303241:THJT006. 2003. e-Print: cs.SE/0306005.

14. Bierlich C., Chakraborty S., Desai N., Gellersen L., Helenius I., Ilten P., Lönnblad L., Mrenna S., Prestel S., Preuss C.T., et al. “AA Comprehensive Guide to the Physics and Usage of PYTHIA 8.3. LU-TP 22-16. MCNET-22-04. FERMILAB-PUB-22-227-SCD [arXiv:2203.11601 [hep-ph]]. 2022. https://doi.org/10.21468/SciPostPhysCodeb.8

15. Sj'strand T. et al. // Comput. Phys. Commun. 2015. V. 191. P. 159. [arXiv:1410.3012 [hep-ph]].

16. Kelley J.H., Kwan E., Purcell J.E., Sheu C.G., Weller H.R. // Nucl. Phys. A. 2012. V. 880. P. 88–195.


Review

For citations:


Gorin A.M., Evdokimov S.V., Zaitsev A.A., Izucheev V.I., Krinitsyn D.S., Polishchuk B.V., Rykalin V.I., Sadovsky S.A., Kharlov Yu.V., Shangaraev A.A. OBSERVATION OF GAMMA-RAY NUCLEAR TRANSITIONS OF EXCITED NUCLEI PRODUCED IN HADRON–NUCLEAR INTERACTIONS IN THE HYPERON+ EXPERIMENT. Nuclear Physics and Engineering. 2025;16(6):915-921. (In Russ.) https://doi.org/10.56304/S2079562925060089. EDN: FNHXPY

Views: 19

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)