Preview

Nuclear Physics and Engineering

Advanced search

EMULATION OF HIGH-FLUENCE REACTOR IRRADIATION OF HIGHLY ORIENTED PYROLYTIC GRAPHITE BY IMPLANTATION OF HELIUM AND CARBON IONS

https://doi.org/10.56304/S2079562925060016

EDN: SKCEEE

Abstract

The effect of high-fluence irradiation on the morphology and structure of highly oriented pyrolytic graphite UPV-1T by carbon ions with energies of 30 keV and helium ions with energies of 10 and 30 keV in the temperature range from room temperature to 600°C with fluence (1.0 – 4.5) × 1018 ions/cm–2 has been studied experimentally. It is shown that implantation of helium ions leads both to the effects of dynamic annealing of radiation damage of the graphite crystal structure and to the effects of helium implantation in simulating the interaction of fusion products with graphite materials.

About the Authors

N. N. Andrianova
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; Moscow Aviation Institute (National Research University)
Russian Federation


A. M. Borisov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University; Moscow Aviation Institute (National Research University); Moscow State University of Technology “STANKIN”
Russian Federation


E. A. Vorobyeva
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation


M. A. Ovchinnikov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Russian Federation


References

1. Бериш Р. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2010. № 7. С. 5–18.

2. Распыление твердых тел ионной бомбардировкой. Вып. 2. Распыление сплавов и соединений, распыление под действием электронов и нейтронов, рельеф поверхности. Под ред. Бериша Р. 1986. Москва: Мир.

3. Parish C.M., Hijazi H., Meyer H.M., Meyer F.W. // Acta Mater. 2014. V. 62. P. 173–181.

4. Вас Гэри С. Основы радиационного материаловедения. Металлы и сплавы. 2014. Москва: Техносфера.

5. Федин П.А., Прянишников К.Е., Зиятдинова А.В. и др. // Ядерн. физ. инжинир. 2023. Т. 14 (5). С. 498–503.

6. http://beam.sinp.msu.ru/.

7. Андрианова Н.Н., Борисов А.М., Воробьева Е.А. и др. // Ядерн. физ. инжинир. 2024. Т. 15 (3). С. 224–231.

8. Ziegler J.F., Biersack J.P. SRIM. 2013. http://www.srim.org

9. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. P. S33–S49.

10. Andrianova N.N., Borisov A.M., Mashkova E.S., et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2013. V. 315. P. 117–120.

11. Фиалков А.С. Углерод, межслоевые соединения и композиты на его основе. 1997. Москва: Аспект Пресс.

12. Андрианова Н.Н., Борисов А.М., Воробьева Е.А. и др. // Ядерн. физ. инжинир. 2025. Т. 16 (1). С. 19–29.

13. Liu D., Cherns D., Johns S., et al // Carbon. 2021. V. 173. P. 215–231.

14. Zhao Y., Lv S., Gao J., et al. // J. Nucl. Mater. 2023. V. 577. P. 154308.

15. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095.

16. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., et al. // Phys. Chem. Chem. Phys. 2007. V. 9 (11). P. 1276.

17. Niwase K. // Int. J. Spect. 2012. V. 2012. P. 197609.

18. Galy N., Toulhoat N., Moncoffre N., et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2017. V. 409. P. 235–240.

19. Nelson R.S., Hudson J.A., Mazey D.J., Piller R.C. // Proc. R. Soc. Lond. A. 1983. V. 386. P. 211–222.

20. Borisov A.M., Kazakov V.A., Mashkova E.S., Ovchinnikov M.A. // Vacuum. 2018. V. 148. P. 195–200.

21. McCulloch D.G., Prawer S. // J. Appl. Phys. 1995. V. 78. P. 3040–3047.

22. Andrianova N.N., Borisov A.M., Kazakov V.A., et al. // Vacuum. 2020. V. 179. P. 109469.

23. Andrianova N.N., Borisov A.M., Mashkova E.S., et al. // J. Phys.: Conf. Ser. 2021. V. 2144. P. 012022.

24. Виргильев Ю.С., Гундорова Н.И., Куроленкин Е.И. и др. // Изв. АН СССР. Сер. Неорганические материалы. 1980. Т. 16 (4). С. 669–673.

25. Виргильев Ю.С., Гундорова Н.И., Куроленкин Е.И. и др. // Физика и химия обработки материалов. 1982. № 2. С. 3–8.

26. Bacon D.J., Rao A.S. // J. Nucl. Mater. 1980. V. 91. P. 178–188.

27. Hinks J.A., Haigh S.J., Greaves G. et al. // Carbon. 2014. V. 68. P. 273–284.

28. Andrianova N.N., Borisov A.M., Vorob’eva E.A., et al. // Bull. Russ. Acad. Sci.: Phys. 2024. V. 88 (4). P. 491–497.


Review

For citations:


Andrianova N.N., Borisov A.M., Vorobyeva E.A., Ovchinnikov M.A. EMULATION OF HIGH-FLUENCE REACTOR IRRADIATION OF HIGHLY ORIENTED PYROLYTIC GRAPHITE BY IMPLANTATION OF HELIUM AND CARBON IONS. Nuclear Physics and Engineering. 2025;16(6):907-914. (In Russ.) https://doi.org/10.56304/S2079562925060016. EDN: SKCEEE

Views: 24

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)