EFFECT OF HIGH-TEMPERATURE ANNEALING ON THE MICROSTRUCTURE OF W–CR–Y ALLOY
https://doi.org/10.56304/S2079562925060193
EDN: PRDQRN
Abstract
In this work, results of atom probe tomography and transmission electron microscopy of changes in the microstructure, grain sizes and chemical composition of the W–Cr–Y alloy as a result of vacuum annealing at temperatures of 1000°C and 1200°C, are represented. In the as-received condition of the alloy average grain size is equal to 1 µm and the grain boundaries are decorated with nanoscale (10 to 180 nm) particles enriched with yttrium and oxygen. Annealing causes recrystallization of the material with a decrease in the average grain size down to 100 nm. In addition, re-dissolution of yttrium oxides and the formation of nanosized clusters are observed, the composition and number density of which depend on the annealing conditions.
About the Authors
A. A. NikitinRussian Federation
S. V. Rogozhkin
Russian Federation
O. V. Ogorodnikova
Russian Federation
P. V. Lyamkin
Russian Federation
References
1. Hasegawa T., Tomita Y., Kohyama A. // J. Nucl. Mater. 1998. V. 258–263 (Part 2). P. 1153–1157. https://doi.org/10.1016/S0022-3115(98)00138-X
2. Blagoeva D.T. et al. // J. Nucl. Mater. 2013. V. 442 (1–3). P. S198–S203. https://doi.org/10.1016/j.jnucmat.2013.01.004
3. Coenen J.W. et al. // Phys. Scr. 2016. P. 014002. https://doi.org/10.1088/0031-8949/2016/T167/014002
4. Maisonner D. et al. // Fusion Eng. Des. 2005. V. 75–79. P. 1173–1179. https://doi.org/10.1016/j.fusengdes.2005.06.095
5. Taylor N.P., Pampin R. // Fusion Eng. Des. 2006. V. 81. P. 1333–1338. https://doi.org/10.1016/j.fusengdes.2005.05.010
6. López-Ruiz P., Koch F., Ordas N., Lindig S., Garcia-Rosales C. // Fusion Eng. Des. 2011. V. 86. P. 1719–1723. https://doi.org/10.1016/j.fusengdes.2011.03.107
7. Koch F., Brinkmann J., Lindig S., Mishra T.P., Linsmeier Ch. // Phys. Scr. 2011. P. 014019. https://doi.org/10.1088/0031-8949/2011/T145/014019
8. García-Rosales C. et al. // Fusion Eng. Des. 2014. V. 89. P. 1611–1616. https://doi.org/10.1016/j.fusengdes.2014.04.057
9. Wegener T. et al. // Nucl. Mater. Energy. 2016. V. 9. P. 394–398. https://doi.org/10.1016/j.nme.2016.07.011
10. Telu S., Mitra R., Pabi S.K. // Metall. Mater. Trans. 2015. V. 46. P. 5909–5919. https://doi.org/10.1007/s11661-015-3166-z
11. Zhao M., Zhou Zh., Ding Q., Zhong M., Arshad K. // Int. J. Refract. Met. Hard Mater. 2015. V. 48. P. 19–23. https://doi.org/10.1016/j.ijrmhm.2014.07.014
12. Veleva L., Schaeublin R., Battabyal M., Plociski T., Baluc N. // Int. J. Refract. Met. Hard Mater. 2015. V. 50. P. 210–216. https://doi.org/10.1016/j.ijrmhm.2015.01.011
13. Calvo A. et al. // Nucl. Mater. Energy. 2016. V. 9. P. 1–8. https://doi.org/10.1016/j.nme.2016.06.002
14. Ho C.K., Iverson B.D. // Renewable Sust. Energy Rev. 2014. V. 29. P. 835–846. https://doi.org/10.1016/j.rser.2013.08.099
15. Boubault A., Claudet B., Faugerox O., Olalde G. // Sol. Energy Mat. Sol. Cells. 2014. V. 123. P. 211–219. https://doi.org/10.1016/j.solmat.2014.01.010
16. Sal E. et al. // Nucl. Mater. Energy. 2020. V. 24. P. 100770. https://doi.org/10.1016/j.nme.2020.100770
17. Calvo A. et al. // Fusion Eng. Des. 2017. V. 124. P. 1118–1121. https://doi.org/10.1016/j.fusengdes.2017.03.001
18. Никитин А.А., Рогожкин С.В., Огородникова О.В., Богачев А.А., Федин П.А., Кулевой Т.В. // Ядерн. физ. инжинир. 2025. Т. 16 (2). С. 135–145. [Nikitin A.A., Rogozhkin S.V., Ogorodnikova O.V., Bogachev A.A., Fedin P.A., Kulevoy T.V. // Phys. Atom. Nuclei. 2023. V. 86. P. 2618–2627. https://doi.org/10.1134/S1063778823120050]. https://doi.org/10.56304/S2079562924050336
19. Sal E., Garcia-Rosales C., Iturriza I., Andueza I., Burgos N. // Fusion Eng. Des. 2019. V. 14 (Part B). P. 1596–1599. https://doi.org/10.1016/j.fusengdes.2019.02.136
Review
For citations:
Nikitin A.A., Rogozhkin S.V., Ogorodnikova O.V., Lyamkin P.V. EFFECT OF HIGH-TEMPERATURE ANNEALING ON THE MICROSTRUCTURE OF W–CR–Y ALLOY. Nuclear Physics and Engineering. 2025;16(6):887-894. (In Russ.) https://doi.org/10.56304/S2079562925060193. EDN: PRDQRN
JATS XML