Preview

Nuclear Physics and Engineering

Advanced search

EFFECT OF HIGH-TEMPERATURE ANNEALING ON THE MICROSTRUCTURE OF W–CR–Y ALLOY

https://doi.org/10.56304/S2079562925060193

EDN: PRDQRN

Abstract

In this work, results of atom probe tomography and transmission electron microscopy of changes in the microstructure, grain sizes and chemical composition of the W–Cr–Y alloy as a result of vacuum annealing at temperatures of 1000°C and 1200°C, are represented. In the as-received condition of the alloy average grain size is equal to 1 µm and the grain boundaries are decorated with nanoscale (10 to 180 nm) particles enriched with yttrium and oxygen. Annealing causes recrystallization of the material with a decrease in the average grain size down to 100 nm. In addition, re-dissolution of yttrium oxides and the formation of nanosized clusters are observed, the composition and number density of which depend on the annealing conditions.

About the Authors

A. A. Nikitin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


S. V. Rogozhkin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


O. V. Ogorodnikova
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


P. V. Lyamkin
National Research Centre “Kurchatov Institute”
Russian Federation


References

1. Hasegawa T., Tomita Y., Kohyama A. // J. Nucl. Mater. 1998. V. 258–263 (Part 2). P. 1153–1157. https://doi.org/10.1016/S0022-3115(98)00138-X

2. Blagoeva D.T. et al. // J. Nucl. Mater. 2013. V. 442 (1–3). P. S198–S203. https://doi.org/10.1016/j.jnucmat.2013.01.004

3. Coenen J.W. et al. // Phys. Scr. 2016. P. 014002. https://doi.org/10.1088/0031-8949/2016/T167/014002

4. Maisonner D. et al. // Fusion Eng. Des. 2005. V. 75–79. P. 1173–1179. https://doi.org/10.1016/j.fusengdes.2005.06.095

5. Taylor N.P., Pampin R. // Fusion Eng. Des. 2006. V. 81. P. 1333–1338. https://doi.org/10.1016/j.fusengdes.2005.05.010

6. López-Ruiz P., Koch F., Ordas N., Lindig S., Garcia-Rosales C. // Fusion Eng. Des. 2011. V. 86. P. 1719–1723. https://doi.org/10.1016/j.fusengdes.2011.03.107

7. Koch F., Brinkmann J., Lindig S., Mishra T.P., Linsmeier Ch. // Phys. Scr. 2011. P. 014019. https://doi.org/10.1088/0031-8949/2011/T145/014019

8. García-Rosales C. et al. // Fusion Eng. Des. 2014. V. 89. P. 1611–1616. https://doi.org/10.1016/j.fusengdes.2014.04.057

9. Wegener T. et al. // Nucl. Mater. Energy. 2016. V. 9. P. 394–398. https://doi.org/10.1016/j.nme.2016.07.011

10. Telu S., Mitra R., Pabi S.K. // Metall. Mater. Trans. 2015. V. 46. P. 5909–5919. https://doi.org/10.1007/s11661-015-3166-z

11. Zhao M., Zhou Zh., Ding Q., Zhong M., Arshad K. // Int. J. Refract. Met. Hard Mater. 2015. V. 48. P. 19–23. https://doi.org/10.1016/j.ijrmhm.2014.07.014

12. Veleva L., Schaeublin R., Battabyal M., Plociski T., Baluc N. // Int. J. Refract. Met. Hard Mater. 2015. V. 50. P. 210–216. https://doi.org/10.1016/j.ijrmhm.2015.01.011

13. Calvo A. et al. // Nucl. Mater. Energy. 2016. V. 9. P. 1–8. https://doi.org/10.1016/j.nme.2016.06.002

14. Ho C.K., Iverson B.D. // Renewable Sust. Energy Rev. 2014. V. 29. P. 835–846. https://doi.org/10.1016/j.rser.2013.08.099

15. Boubault A., Claudet B., Faugerox O., Olalde G. // Sol. Energy Mat. Sol. Cells. 2014. V. 123. P. 211–219. https://doi.org/10.1016/j.solmat.2014.01.010

16. Sal E. et al. // Nucl. Mater. Energy. 2020. V. 24. P. 100770. https://doi.org/10.1016/j.nme.2020.100770

17. Calvo A. et al. // Fusion Eng. Des. 2017. V. 124. P. 1118–1121. https://doi.org/10.1016/j.fusengdes.2017.03.001

18. Никитин А.А., Рогожкин С.В., Огородникова О.В., Богачев А.А., Федин П.А., Кулевой Т.В. // Ядерн. физ. инжинир. 2025. Т. 16 (2). С. 135–145. [Nikitin A.A., Rogozhkin S.V., Ogorodnikova O.V., Bogachev A.A., Fedin P.A., Kulevoy T.V. // Phys. Atom. Nuclei. 2023. V. 86. P. 2618–2627. https://doi.org/10.1134/S1063778823120050]. https://doi.org/10.56304/S2079562924050336

19. Sal E., Garcia-Rosales C., Iturriza I., Andueza I., Burgos N. // Fusion Eng. Des. 2019. V. 14 (Part B). P. 1596–1599. https://doi.org/10.1016/j.fusengdes.2019.02.136


Review

For citations:


Nikitin A.A., Rogozhkin S.V., Ogorodnikova O.V., Lyamkin P.V. EFFECT OF HIGH-TEMPERATURE ANNEALING ON THE MICROSTRUCTURE OF W–CR–Y ALLOY. Nuclear Physics and Engineering. 2025;16(6):887-894. (In Russ.) https://doi.org/10.56304/S2079562925060193. EDN: PRDQRN

Views: 18

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)