Preview

Nuclear Physics and Engineering

Advanced search

CALCULATION METHOD OF SUPERFLUID HELIUM CONDENSATION IN THE ULTRACOLD NEUTRON SOURCE VESSEL FOR THE PIС REACTOR

https://doi.org/10.56304/S2079562925060168

EDN: VLNCMD

Abstract

A calculation methodology of the condensation rate of superfluid helium in the ultracold neutron source vessel for the PIC reactor is presented. The theoretical helium condensation rate of 5.36 L/h is obtained. To approve the calculation results, a full-scale experiment on helium condensation in a closed vessel was carried out. For the experiment the helium cryostat KG60/300-1 connected to the technological complex of superfluid helium production for the ultracold neutron source was used. The temperature in the cryostat was maintained by helium vapour pumping. The liquefaction rate during the experiment was 1.64 L/h, which confirms with good accuracy the proposed theoretical calculation model, which predicted the liquefaction rate to be 1.72 L/h. The time for the ultracold neutron source to reach the operating temperature regime was calculated to be 6.5 h at a total liquid helium consumption of 64 L. This estimation will be taken into account when planning the regular operation of the ultracold neutron source for the PIK reactor.

About the Authors

V. A. Lyamkin
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


A. P. Serebrov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


A. O. Koptyukhov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


A. V. Sirotin
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


G. O. Borodinov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


A. A. Nedolyak
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


D. V. Prudnikov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


P. A. Hazov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute” (NRC “Kurchatov Institute” – PNPI)
Russian Federation


References

1. Serebrov A.P. et al. // Tech. Phys. 2022. V. 67 (6). P. 763–769.

2. Зельдович Я.Б. // Журн. эксп. теор. физ. 1959. Т. 36 (6). С. 1952 [Zeldovich Y.B. // J. Exp. Theor. Phys. 1959. V. 36 (6). P. 1952].

3. Владимирский В.В. // Журн. эксп. теор. физ. 1960. Т. 39 (4). С. 1062 [Vladimirsky V.V. // J. Exp. Theor. Phys. 1960. V. 39 (4). P. 1062].

4. Gonzalez F.M. et al. // Phys. Rev. Lett. 2021. V. 127 (16). P. 162501.

5. Abel C. et al. // Phys. Rev. Lett. 2020. V. 124 (8). P. 081803.

6. Abel S., Khalil S., Lebedev O. // Nucl. Phys. B. 2001. V. 606 (1–2). P. 151–182.

7. Serebrov A.P. // Phys.-Usp. 2019. V. 62 (6). P. 596.

8. Kovalchuk M.V. et al. // Crystallogr. Rep. 2021. V. 66. P. 195–215.

9. Golub R., Pendlebury J.M. // Phys. Lett. A. 1977. V. 62 (5). P. 337–339.

10. Лямкин В.А. и др. // Журн. тех. физ. 2025. Т. 95 (6). С. 1251–1258 [Lyamkin V.A. et al. // Tech. Phys. 2025. V. 95 (6). P. 1251–1258].

11. Leung K.K.H. et al. // Phys. Rev. 2016. V. 93 (2). P. 025501.

12. Lyamkin V.A. et al. // Phys. Part. Nucl. Lett. 2025. V. 22 (2). P. 304−307.

13. Serebrov A.P. et al. // Tech. Phys. 2017. V. 62 (2). P. 329–333.

14. Brooks J.S., Donnelly R.J. // J. Phys. Chem. Ref. Data. 1977. V. 6 (1). P. 51–104.

15. Abel W.R., Wheatley J.C. // Phys. Rev. Lett. 1968. V. 21 (17). P. 1231.

16. Готовский М.А., Суслов В.А. // Тепломассообмен в технологических установках. 2017. СПб: Политех. унив. [Gotovsky M.A., Suslov V.A. // Heat and Mass Transfer in the Technological Installations. 2017. SPb: Polytech. Univ.].


Review

For citations:


Lyamkin V.A., Serebrov A.P., Koptyukhov A.O., Sirotin A.V., Borodinov G.O., Nedolyak A.A., Prudnikov D.V., Hazov P.A. CALCULATION METHOD OF SUPERFLUID HELIUM CONDENSATION IN THE ULTRACOLD NEUTRON SOURCE VESSEL FOR THE PIС REACTOR. Nuclear Physics and Engineering. 2025;16(6):866-872. (In Russ.) https://doi.org/10.56304/S2079562925060168. EDN: VLNCMD

Views: 22

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)