CALCULATION METHOD OF SUPERFLUID HELIUM CONDENSATION IN THE ULTRACOLD NEUTRON SOURCE VESSEL FOR THE PIС REACTOR
https://doi.org/10.56304/S2079562925060168
EDN: VLNCMD
Abstract
A calculation methodology of the condensation rate of superfluid helium in the ultracold neutron source vessel for the PIC reactor is presented. The theoretical helium condensation rate of 5.36 L/h is obtained. To approve the calculation results, a full-scale experiment on helium condensation in a closed vessel was carried out. For the experiment the helium cryostat KG60/300-1 connected to the technological complex of superfluid helium production for the ultracold neutron source was used. The temperature in the cryostat was maintained by helium vapour pumping. The liquefaction rate during the experiment was 1.64 L/h, which confirms with good accuracy the proposed theoretical calculation model, which predicted the liquefaction rate to be 1.72 L/h. The time for the ultracold neutron source to reach the operating temperature regime was calculated to be 6.5 h at a total liquid helium consumption of 64 L. This estimation will be taken into account when planning the regular operation of the ultracold neutron source for the PIK reactor.
About the Authors
V. A. LyamkinRussian Federation
A. P. Serebrov
Russian Federation
A. O. Koptyukhov
Russian Federation
A. V. Sirotin
Russian Federation
G. O. Borodinov
Russian Federation
A. A. Nedolyak
Russian Federation
D. V. Prudnikov
Russian Federation
P. A. Hazov
Russian Federation
References
1. Serebrov A.P. et al. // Tech. Phys. 2022. V. 67 (6). P. 763–769.
2. Зельдович Я.Б. // Журн. эксп. теор. физ. 1959. Т. 36 (6). С. 1952 [Zeldovich Y.B. // J. Exp. Theor. Phys. 1959. V. 36 (6). P. 1952].
3. Владимирский В.В. // Журн. эксп. теор. физ. 1960. Т. 39 (4). С. 1062 [Vladimirsky V.V. // J. Exp. Theor. Phys. 1960. V. 39 (4). P. 1062].
4. Gonzalez F.M. et al. // Phys. Rev. Lett. 2021. V. 127 (16). P. 162501.
5. Abel C. et al. // Phys. Rev. Lett. 2020. V. 124 (8). P. 081803.
6. Abel S., Khalil S., Lebedev O. // Nucl. Phys. B. 2001. V. 606 (1–2). P. 151–182.
7. Serebrov A.P. // Phys.-Usp. 2019. V. 62 (6). P. 596.
8. Kovalchuk M.V. et al. // Crystallogr. Rep. 2021. V. 66. P. 195–215.
9. Golub R., Pendlebury J.M. // Phys. Lett. A. 1977. V. 62 (5). P. 337–339.
10. Лямкин В.А. и др. // Журн. тех. физ. 2025. Т. 95 (6). С. 1251–1258 [Lyamkin V.A. et al. // Tech. Phys. 2025. V. 95 (6). P. 1251–1258].
11. Leung K.K.H. et al. // Phys. Rev. 2016. V. 93 (2). P. 025501.
12. Lyamkin V.A. et al. // Phys. Part. Nucl. Lett. 2025. V. 22 (2). P. 304−307.
13. Serebrov A.P. et al. // Tech. Phys. 2017. V. 62 (2). P. 329–333.
14. Brooks J.S., Donnelly R.J. // J. Phys. Chem. Ref. Data. 1977. V. 6 (1). P. 51–104.
15. Abel W.R., Wheatley J.C. // Phys. Rev. Lett. 1968. V. 21 (17). P. 1231.
16. Готовский М.А., Суслов В.А. // Тепломассообмен в технологических установках. 2017. СПб: Политех. унив. [Gotovsky M.A., Suslov V.A. // Heat and Mass Transfer in the Technological Installations. 2017. SPb: Polytech. Univ.].
Review
For citations:
Lyamkin V.A., Serebrov A.P., Koptyukhov A.O., Sirotin A.V., Borodinov G.O., Nedolyak A.A., Prudnikov D.V., Hazov P.A. CALCULATION METHOD OF SUPERFLUID HELIUM CONDENSATION IN THE ULTRACOLD NEUTRON SOURCE VESSEL FOR THE PIС REACTOR. Nuclear Physics and Engineering. 2025;16(6):866-872. (In Russ.) https://doi.org/10.56304/S2079562925060168. EDN: VLNCMD
JATS XML