Preview

Nuclear Physics and Engineering

Advanced search

MEPHIST-0 TOKAMAK POWER SUPPLY SYSTEM OF ELECTROMAGNETIC COILS

https://doi.org/10.56304/S2079562925060065

EDN: NZOQGI

Abstract

The paper describes the development and testing of the power supply system for the coils of the educational and research tokamak MEPhIST, which includes capacitor banks, automated charging systems, state monitoring, synchronized switching of the banks to the toroidal and poloidal field coils, and the central solenoid, as well as protection systems. The technical aspects of the developed system are considered in detail from the standpoint of simplicity, scalability, fault tolerance, maintainability, as well as the possibility of modification. The implemented solutions, including the schematic diagrams, designed boards, and modules, can be useful to electromagnetic facilities with similar parameters and tasks.

About the Authors

N. E. Efimov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


F. S. Podolyako
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. I. Pashkov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. S. Prishvitsyn
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. A. Sorokin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch), Russian Academy of Sciences
Russian Federation


V. V. Vaitonis
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


S. A. Krat
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Krat S. et al. // Fusion Sci. Technol. 2023. P. 1–19. https://doi.org/10.1080/15361055.2022.2149033

2. Крат С.А., Пришвицын А.С., Алиева А.И., Ефимов Н.Е., Виницкий Е.А., Булгадарян Д.Г., Воробьёв Г.М., Курнаев В.А. // Ядерн. физ. инжинир. 2022. Т. 13 (1). С. 43–52. https://doi.org/10.56304/S2079562922010201 [Krat S.A., Pryshvitsyn A.S., Alieva A.I., Efimov N.E., Vinitskiy E.A., Bulgadaryan D.G., Vorobyov G.M., Kurnaev V.A. // Phys. At. Nucl / 2021. V. 84. № 12. P. 1995–2003. https://doi.org/10.1134/S1063778821120024].

3. Ovsyannikov D.A., Ovsyannikov A.D., Zhabko A.P., Veremey E.I., Vorobyov G.M., Zavadskij V.M. // Proc. 2005 Int. Conf. Physics and Control /2005. Saint Petersburg, Russia. 2005. P. 75–79. https://doi.org/10.1109/PHYCON.2005.1513954.

4. Ahmad Z., Ahmad S., Naveed M.A., Deeba F., Javeed M.A., Batool S., Hussain S., Vorobyov G.M. // Phys. Scr. 2017. V. 92 (4). P. 045601. https://doi.org/10.1088/1402-4896/aa6458

5. Vinitskiy E., Ulasevich D., Prishvitsyn A., Efimov N., Krat S., Khayrutdinov R. // Fusion Sci. Technol. 2024. V. 81 (5). P. 485–494. https://doi.org/10.1080/15361055.2024.2431782

6. Vinitskiy E.A., Efimov N.E., Prishvitsyn A.S., Sorokin I.A., Krat S.A. // Plasma Phys. Control. Fusion. 2024. V. 66 (1). P. 015004. https://doi.org/10.1088/1361-6587/ad0d87

7. Ulasevich D.L., Khayrutdinov R.R., Lukash V.E., Alieva A.I., Prishvitsyn A.S., Efimov N.E., Krat S.A. // Phys. At. Nucl. 2023. V. 86 (7). P. 1555–1563. https://doi.org/10.1134/S1063778823070244

8. Zhu L., Huang L., Fu P., He S., Wang G., Chen X., Wang Z., Li L. // Fusion Eng. Des. 2021. V. 172. P. 112757. https://doi.org/10.1016/j.fusengdes.2021.112757

9. Khvostenko P.P., Anashkin I.O., Bondarchuk E.N., Injutin N.V., Krylov V.A., Levin I.V., Mineev A.B., Sokolov M.M. // Phys. At. Nucl. 2020. V. 83 (7). P. 1037–1057. https://doi.org/10.1134/S1063778820070078

10. Zarva D.B. et al. // PAST-TF. 2018. V. 41. № 2. P. 59–70. https://doi.org/10.21517/0202-3822-2018-41-2-59-70

11. Neumeyer C. et al. // 25th IEEE Symp. Fusion Engineering (SOFE). San Francisco, CA, USA. 2013. P. 1–8. https://doi.org/10.1109/SOFE.2013.6635287.

12. Lampasi A., Minucci S. // IEEE Int. Conf. Environment and Electrical Engineering and IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). Milan, Italy. 2017. P. 1–6. https://doi.org/10.1109/EEEIC.2017.7977851.

13. Meshcheryakov A.I., Grishina I.A. // Plasma Phys. Rep. 2022. V. 48 (10). P. 1057–1061. https://doi.org/10.1134/S1063780X22600451

14. Agredano-Torres M. et al. // Fusion Eng. Des. 2021. V. 168. P. 112683. https://doi.org/10.1016/j.fusengdes.2021.112683

15. Grover O., Kocman J., Odstrcil M., Odstrcil T., Matusu M., Stöckel J., Svoboda V., Vondrasek G., Zara J. // Fusion Eng. Des. 2016. V. 112. P. 1038–1044. https://doi.org/10.1016/j.fusengdes.2016.05.009

16. Hussain S. et al. // J. Fusion Energy. 2016. V. 35 (3). P. 529–537. https://doi.org/10.1007/s10894-015-0052-z

17. Mirzaei H.R., Amrollahi R. // J. Fusion Energy. 2019. V. 38 (5–6). P. 548–556. https://doi.org/10.1007/s10894-019-00227-3

18. Rehman O.A., Ahmad S., Javed M.A., Ahmad N., Khosa A.M., Qayyum A., Naveed M.A. // Radiat. Eff. Defects Solids. 2024. P. 1–14. https://doi.org/10.1080/10420150.2024.2364181

19. Efimov N., Podolyako F., Prishvitsyn A., Krat S. // Fusion Eng. Des. 2023. V. 196. P. 113990. https://doi.org/10.1016/j.fusengdes.2023.113990

20. Тиристор силовой Т293-5000. 2024. https://asenergi.com/catalog/tiristory-silovye/t293/t293-5000.html

21. Фpeймвopк Litex. 2024. https://github.com/enjoy-digital/litex


Review

For citations:


Efimov N.E., Podolyako F.S., Pashkov I.I., Prishvitsyn A.S., Sorokin I.A., Vaitonis V.V., Krat S.A. MEPHIST-0 TOKAMAK POWER SUPPLY SYSTEM OF ELECTROMAGNETIC COILS. Nuclear Physics and Engineering. 2025;16(6):852-865. (In Russ.) https://doi.org/10.56304/S2079562925060065. EDN: NZOQGI

Views: 25

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)