ОСОБЕННОСТИ ПОВЕДЕНИЯ БОРА ПРИ ДИНАМИЧЕСКОМ ДЕФОРМАЦИОННОМ СТАРЕНИИ В ЖАРОПРОЧНОМ НИКЕЛЕВОМ СУПЕРСПЛАВЕ, ПОЛУЧЕННОМ ПО PM HIP ТЕХНОЛОГИИ – I. ИСПЫТАНИЕ НА ВЫСОКОТЕМПЕРАТУРНОЕ РАСТЯЖЕНИЕ
https://doi.org/10.56304/S2079562925060284
EDN: WGWVSJ
Аннотация
Представлены результаты комплексного многомасштабного исследования структуры и распределения бора в зоне разрушения жаропрочного никелевого суперсплава EP741NP, полученного по PM HIP технологии с использованием быстрозакаленного PREP порошка, после высокотемпературного испытания на растяжение. Прямым ядерно-физическим методом трековой авторадиографии в сочетании с металлографическим (LM), (SEM), (EDX) и OIM методами проведено детальное изучение макро-, мезо-, микроструктуры и распределения бора в зоне разрушения. Выявлен эффект динамического деформационного старения (DSA) с участием бора на стадии разрушения, заключающийся в интенсивной миграции бора в зоне пластической деформации шейки с аномально высоким эффективным коэффициентом диффузии и образовании крупных аллотриоморфнных выделений боридной фазы M 3 B 2 на мезо масштабной петле сдвига и мезо масштабных полосах сдвига типа полос Портевен-Ле Шателье (PLC) в короне петли, локализованных вокруг раскрывающейся мезо масштабной трещины в области локализованной деформации шейки. Выявленный эффект DSA с участием бора аналогичен эффекту DSA с участием углерода и образованием полос PLC, декорированных дисперсными карбидами в суперсплавах на основе никеля и аустенитных коррозионно-стойких сталях на стадии деформационного упрочнения.
Список литературы
1. He Z., Jiang Y., Chang L., Huang H. Helium ion irradiation-induced damage of powder metallurgy-hot isostatic pressed Ni-based alloy GH3535 for molten salt reactor applications // J. Nucl. Mater. 2024. V. 589. P. 154871. https://doi.org/10.1016/j.jnucmat.2023.154871
2. Shulga A.V., Ofitserov A.A., Kuzmicheva L.G. Analysis of carbon and boron behavior in PM Ni base superalloys of the type EP741NP. Proc. World PM Congress and Exhibition 2004. Oct. 17–21, 2024. Vienna, Austria. V. 4. P. 731–736.
3. Pollock T.M. Alloy design for aircraft engines // Nat. Mater. 2016. V. 15. P. 809–815. https://doi.org/10.1038/nmat4709
4. Shulga A.V. A comparative study of the mechanical properties and the behavior of carbon and boron in stainless steel cladding tubes fabricated by PM HIP and traditional technologies // J. Nucl. Mater. 2013. V. 434. P. 133–140. https://doi.org/10.1016/j.jnucmat.2012.11.008
5. Shulga A.V. Effect of the heat treatment on the microstructure, boron distribution and flow stress of the Ni-based superalloy PM HIP compact under high temperature compression tests. Proc. World PM Congress and Exhibition 2016. October 9–13, 2016. Hamburg, Germany. HIP – Process. P. 1–6.
6. Shulga A.V. A multiscale study of boron and carbon behavior in the necking and fracture zones of the high temperature Ni-based superalloy under high temperature tensile testing. World PM Congress and Exhibition 2022. October 9–13, 2022. Lyon, France, High Temperature Materials. P. 1–6.
7. Beese A.M., Wang Z., Stoica A.D., Ma D. Absence of dynamic strain aging in an additively manufactured nickel-base superalloy // Nat. Commun. 2018. V. 9. P. 2083. https://doi.org/10.1038/s41467-018-04473-5
8. Yu H., Fu J., Wang C., Chen Y., Wang L., Fang H., Li J., Zwaag S. v. d., Xu W. Robust additive manufacturable Ni superalloys designed by the integrated optimization of local elemental segregation and cracking susceptibility criteria // Acta Mater. 2024. V. 266. P. 119658. https://doi.org/10.1016/j.actamat.2024.119658.29008-2024
9. Ren N., Li J., Zhang R., Panwisawas C., Xia1 M., Dong H., Li J. Solute trapping and non-equilibrium microstructure during rapid solidification of additive manufacturing // Nat Commun. 2023. V. 14. P. 7990. https://doi.org/10.1038/s41467-023-43563-x
10. Kontis P., Mohd Yusof H.A., Pedrazzini S., Danaie M., Moore K.L., Bagot P.A.J., Moody M.P., Grovenor C.R.M., Reed R.C. On the effect of boron on grain boundary character in a new polycrystalline superalloy // Acta Mater. 2016. V. 103. P. 688–699. https://doi.org/10.1016/j.actamat.2015.10.006
11. Gopinath K., Gogia A.K., Kamat S.V., Ramamurty U. Dynamic strain ageing in Ni-base superalloy 720Li // Acta Mater. 2009. V. 57 (4). P. 1243–1253. https://doi.org/10.1016/j.actamat.2008.11.005
12. Bagot P.A.J., Silk O.B.W., Douglas J.O., Pedrazzini S., Crudden D.J., Martin T.L., Hardy M.C., Moody M.P., Reed R.C. An Atom Probe Tomography study of site preference and partitioning in a nickel-based superalloy // Acta Mater. 2017. V. 125. P. 156–165. https://doi.org/10.1016/j.actamat.2016.11.053
13. Porollo S.I., Konobeev Yu.V., Garner F.A. Swelling and microstructure of austenitic stainless steel ChS-68 CW after high dose neutron irradiation // J. Nucl. Mater. 2009. V. 393. P. 61–66. https://doi.org/10.1016/j.jnucmat.2009.05.005
14. Шульга А.В. // Ядерн. физ. инжинир. 2024. Т. 15 (2). С. 116−132. https://doi.org/10.56304/ S2079562923010268 [Shulga A.V. Comparative Study of the Structure Features of Rapidly Quenched REP Powders, PM HIP Compacts, and Products of Austenitic Stainless Steels and Their Traditional Counterparts // Phys. At. Nucl. 2023. V. 86 (9). P. 1998–2012. https://doi.org/10.1134/S1063778823090235].
15. Shulga A.V. Anomalous Particles (Granules) In PREP-Powders. A Multiscale Study of The Structure Evolution of the PM HIP Stainless Steels under Hot Deformation and Heat Treatment. World PM Congress and Exibition 2022. October 9–13, 2022. Lyon, France. Hot Isostatic Pressing, P. 1–6.
16. Aboulfadl H., Deges J., Choi P., Raabe D. Dynamic strain aging studied at the atomic scale // Acta Mater. 2015. V. 86. P. 34–42. https://doi.org/10.1016/j.actamat.2014.12.028
17. Epperlya E.N., Sills R.B. Transient solute drag and strain aging of dislocations // Acta Mater. 2020. V. 193. P. 1–9. https://doi.org/10.1016/j.actamat.2020.03.031
18. Lee S.-Y., Takushima C., Hamada J., Nakada N. Macroscopic and microscopic characterizations of Portevin-LeChatelier effect in austenitic stainless steel using high-temperature digital image correlation analysis // Acta Mater. 2021. V. 205. P. 116560. https://doi.org/10.1016/j.actamat.2020.116560
19. Zhang F., Bower A.F., Curtin W.A. The influence of serrated flow on necking in tensile specimens // Acta Mater. 2012. V. 60. P. 43–50. https://doi.org/10.1016/j.actamat.2011.09.008
20. Havner K.S. On the onset of necking in the tensile test // Int. J. Plast. 2004. V. 20. P. 965–978. https://doi.org/10.1016/j.ijplas.2003.05.004
21. Charpagne M.A., Hestroffer J.M., Polonsky A.T., Echlin M.P., Texier D., Valle V., Beyerlein I.J., Pollock T.M., Stinville J.C. Slip localization in Inconel 718: A three-dimensional and statistical perspective // Acta Mater. 2021. V. 215. P. 117037. https://doi.org/10.1016/j.actamat.2021.117037
22. Ho H., Risbet M., Feaugas X. On the unified view of the contribution of plastic strain to cyclic crack initiation: impact of the progressive transformation of shear bands to persistent slip bands // Acta Mater. 2025. V. 85. P. 155–167. https://doi.org/10.1016/j.actamat.2014.11.020
23. Stinville J.C., Martin E., Karadge M., Ismonov S., Soare M., Hanlon T., Sundaram S., Echlin M.P., Callahan P.G., Lenthe W.C., Miller V.M., Miao J., Wessman A.E., Finlay R., Loghin A., Marte J., Pollock T.M. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: competing failure modes // Acta Mater. 2018. V. 152. P. 16–33. https://doi.org/10.1016/j.actamat.2018.03.035
24. Nikulin I., Kaibyshev R. Deformation behavior and the Portevin-Le Chatelier effect in a modified 18Cr–8Ni stainless steel // Mater. Sci. Eng. A. 2011. V. 528. P. 1340–1347. https://doi.org/10.1016/j.msea.2010.10.056
25. Sills R.B., Cai W. Solute drag on perfect and extended dislocations // Philos. Mag. 2016. V. 96. P. 895–921. https://doi.org/10.1080/14786435.2016.1142677
26. Peng G., Gan X., Jiang Y., Li Z., Zhou K. Effect of dynamic strain aging on the deformation behavior and microstructure of Cu–15Ni–8Sn alloy // J. Alloys Compd. 2017. V. 718. P. 182–187. https://doi.org/10.1016/j.jallcom.2017.05.127
27. Zhang X., Zhou D., Li Y., Zhang D. Concurrent dynamic strain aging and dynamic precipitation evades strength-ductility trade-off in a high Mg-content aluminum crossover alloy // Mater. Sci. Eng. A. 2022. V. 854. P. 143800. https://doi.org/10.1016/j.msea.2022.143800
28. Kuang W., Was G.S. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water // Scr. Mater. 2015. V. 107. P. 107–110. https://doi.org/10.1016/j.scriptamat.2015.05.033
29. Hayes R.W., Hayes W.C. On the mechanism of delayed discontinuous plastic flow in an age-hardened nickel alloy // Acta Metall. 1982. V. 30. P. 1295–1301. https://doi.org/10.1016/0001-6160(82)90148-1
30. Cui C., Zhang R., Zhou Y., Sun X. Portevin-Le Châtelier effect in wrought Ni-based superalloys: Experiments and mechanisms // J. Mater. Sci. Technol. 2020. V. 51. P. 16–31. https://doi.org/10.1016/j.jmst.2020.03.023
31. Koyama M., Sawaguchi T., Tsuzaki K. Overview of dynamic strain aging and associated phenomena in Fe-Mn–C austenitic steels // ISIJ Int. 2018. V. 58 (8). P. 1383–1395. https://doi.org/10.2355/isijinternational.ISIJINT-2018-237
32. Jin D., Li J., Shao N. The effect of dynamic strain aging on fatigue property for 316L stainless steel // J. Mater. Res. 2016. V. 31 (5). P. 627–634. https://doi.org/10.1557/jmr.2016.49
33. Kuang W., Was G.S. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water // Scr. Mater. 2015. V. 107. P. 107–110. https://doi.org/10.1016/j.scriptamat.2015.05.033
34. Hayes R.W. On a proposed theory for the disappearance of serrated flow in F.C.C Ni alloys // Acta Metall. 1983. V. 31. P. 365–371. https://doi.org/10.1016/0001-6160(83)90213-4
35. Karlsson L., Nordén H., Odelius H. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel – I. Large scale segregation behaviour // Acta Metall. 1988. V. 36 (1). P. 1–12. https://doi.org/10.1016/0001-6160(88)90023-5
36. Шульга А.В. // Ядерн. физ. инжинир. 2023. Т. 14 (1). С. 27−45. https://doi.org/10.56304/S2079562922030484 [Shulga A.V. The Nature of Anomalous Particles (Granules) in Rapidly Quenched PREP Powders: III. Multiscale Study of Behavior of Boron and Carbon in PM HIP Compacts of High Temperature Ni-Based Superalloys under Hot Deformation and Heat Treatment // Phys. At. Nucl. 2021. V. 84 (11). P. 1801–1816. https://doi.org/10.1134/S1063778822100581].
37. Radin I.V., Ryabova G.G., Perfilov V.V. Two-element track autoradiography of boron and nitrogen in various materials // Nucl. Tracks Radiat. Meas. 1992. V. 20. P. 297–300. https://doi.org/10.1016/1359-0189(92)90055-Z
38. Anderson P.M., Hirth J.P., Lothe J. Theory of Dislocations (3rd Ed.). 2017. Cambridge: Cambridge Univ.
39. Kontis P., Yusof H.A.M., Pedrazzini S., Danaie M., Moore K.L., Bagot P.A.J., Moody M.P., Grovenor C.R.M., Reed R.C. On the effect of boron on grain boundary character in a new polycrystalline superalloy // Acta Mater. 2016. V. 103. P. 688–699. https://doi.org/10.1016/j.actamat.2015.10.006
40. Mehrer H. Diffusion in Solids. Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series in Solid-State Sciences. 2007. V. 155. Berlin: Springer. https://doi.org/10.1007/978-3-540-71488-0
41. Bhadeshia H.K.D.H. Theory of Transformations in Steels. 2021. Boca Raton: CRC Press.
42. Shulga A.V. The Nature of Anomalous Particles (Granules) in Rapidly Quenched PREP Powders: III. Multiscale Study of Behavior of Boron and Carbon in PM HIP Compacts of High Temperature Ni-Based Superalloys under Hot Deformation and Heat Treatment, Proc. Euro PM 2021 Congress & Exibition. 18–22 October. 2021. High Temperature Applications. P. 1–6.
43. Hu X.B., Niu H.Y., Ma X.L., Oganov A.R., Fisher C.A.J., Sheng N.C., Liu J.D., Jin T., Sun X.F., Liu J.F., Ikuhara Y. Atomic-scale observation and analysis of chemical ordering in M3 B2 and M5 B3 borides // Acta Mater. 2018. V. 149. P. 274–284. https://doi.org/10.1016/j.actamat.2018.02.055
44. Sabol G.P., Stickler R. Microstructure of Nickel-Based Superalloys // Phys. Status Sol. 1969. V. 35 (11). P. 11–52. https://doi.org/10.1002/pssb.19690350102
45. Karlsson L., Nordén H. Non-equilibrium grain boundary segregation of boron in austenitic stainless steel – IV. Precipitation behaviour and distribution of elements at grain boundaries // Acta Metall. 1988. V. 36 (1). P. 35–48. https://doi.org/10.1016/0001-6160(88)90026-0
46. Hartea A., Atkinson M., Smith A., Drouven C., Zaefferer S., Quinta da Fonseca J., Preuss M. The effect of solid solution and gamma prime on the deformation modes in Ni-based superalloys // Acta Mater. 2020. V. 194. P. 257–275. https://doi.org/10.1016/j.actamat.2020.04.004
47. Leòn-Cázares F.D., Schlütter R., Jackson T., Galindo-Nava E.I., Rae C.M.F. A multiscale study on the morphology and evolution of slip bands in a nickel-based superalloy during low cycle fatigue // Acta Mater. 2020. V. 182. P. 47–59. https://doi.org/10.1016/j.actamat.2019.10.033
48. Shulga A.V. Analysis of Boron Behavior in The High Temperature Ni-Based PM HIP Superalloys by the Use of a Firstly Proposed TTT Diagram. Euro PM Congress and Exhibition 2023. October 1–4, 2023. Lisbon, Portugal. 2023. High Temperature Materials – Ni and Co based Superalloys. P. 1–7.
49. Park K., Withey P. Compositions of gamma and gamma prime phases in an as-cast nickel-based single crystal superalloy turbine blade // Crystals. 2022. V. 12 (2). P. 299. https://doi.org/10.3390/cryst12020299
50. Reed R., Tao T., Warnken N. Alloys-By-Design: Application to nickel-based single crystal superalloys // Acta Mater. 2009. V. 57. P. 5898–5913. https://doi.org/10.1016/j.actamat.2009.08.018
51. Sun C.T., Jin Z.-H. Fracture Mechanics. 2012. Waltham: Academic Press. https://doi.org/10.1016/C2009-0-63512-1
52. Gross D., Seelig T. Fracture Mechanics. Mechanical Engineering Series. 2018. Cham: Springer. https://doi.org/10.1007/978-3-319-71090-7
53. Stepanova L., Roslyakov P., Lomakov P. A Photoelastic Study for Multiparametric Analysis of the Near Crack Tip Stress Field Under Mixed Mode Loading. 21st Eur. Conf. Fracture, ECF21. June 20–24. 2016. Catania, Italy. Structural Integrity Procedia. 2016. V. 2. P. 1797–1804.
54. Pisarev V.S., Matvienko Y.G., Eleonsky S.I., Odintsev I.N. Combining the crack compliance пoдaтливocть method and speckle interferometry data for determination of stress intensity factors and T-stresses // Eng. Fract. Mech. 2017. V. 179. P. 348–374. https://doi.org/10.1016/j.engfracmech.2017.04.029
55. Janssen M., Zuidema J., Wanhill R.J.H. Fracture Mechanics (2nd Ed.). 2006. Abingdon: Spon Press.
56. Pippan R., Zelger C., Gach E., Bichler C., Weinhandl H. On the mechanism of fatigue crack propagation in ductile metallic materials // Fatigue Fract. Eng. Mater. Struct. 2010. V. 34. P. 1–16. https://doi.org/10.1111/j.1460-2695.2010.01484.x
57. Li X., Li W., Irving D.L., Varga L.K., Vitos L., Schonecker S. Ductile and brittle crack-tip response in equimolar refractory highentropy Alloys // Acta Mater. 2020. V. 189. P. 174–187. https://doi.org/10.1016/j.actamat.2020.03.004
58. Dunand D.C., Mortensen A. Relaxed configuration of a row of punched prismatic dislocation loops // Scr. Metall. Mater. 1991. V. 25. P. 607–612. https://doi.org/10.1016/0956-716X(91)90100-F
59. Dunand D.C., Mortensen A. On plastic relaxation of thermal stresses in reinforced metals // Acta Metall. Mater. 1991. V. 39 (2). P. 127–139. https://doi.org/10.1016/0956-7151(91)90261-X
60. Ohr S.M. An Electron Microscope Study of Crack Tip Deformation and its Impact on the Dislocation Theory of Fracture // Mater. Sci. Eng. 1985. V. 72. P. 1–35. https://doi.org/10.1016/0025-5416(85)90064-3
Рецензия
Для цитирования:
Шульга А.В. ОСОБЕННОСТИ ПОВЕДЕНИЯ БОРА ПРИ ДИНАМИЧЕСКОМ ДЕФОРМАЦИОННОМ СТАРЕНИИ В ЖАРОПРОЧНОМ НИКЕЛЕВОМ СУПЕРСПЛАВЕ, ПОЛУЧЕННОМ ПО PM HIP ТЕХНОЛОГИИ – I. ИСПЫТАНИЕ НА ВЫСОКОТЕМПЕРАТУРНОЕ РАСТЯЖЕНИЕ. Ядерная физика и инжиниринг. 2025;16(6):795-812. https://doi.org/10.56304/S2079562925060284. EDN: WGWVSJ
For citation:
Shulga A.V. FEATURES OF BORON BEHAVIOR DURING DYNAMIC STRAIN AGING IN A HIGH TEMPERATURE NI-BASED SUPERALLOY PRODUCED BY PM HIP TECHNOLOGY – I. HIGH TEMPERATURE TENSILE TESTING. Nuclear Physics and Engineering. 2025;16(6):795-812. (In Russ.) https://doi.org/10.56304/S2079562925060284. EDN: WGWVSJ