Preview

Nuclear Physics and Engineering

Advanced search

NANOSTRUCTURE OF OXIDE DISPERSION-STRENGTHENED STEEL MECHANICALLY ALLOYED WITH INTERMETALLIC FE3Y

https://doi.org/10.56304/S2079562925060247

EDN: QXPSAA

Abstract

In this work, the nanostructure of oxide dispersion-strengthened steel 13.5Cr–Fe3Y ODS, obtained by mechanical alloying of oxidized matrix steel powder and Fe3Y intermetallic powder. In addition to the initial state, the effect of thermal aging on the nanostructure of this steel at 650°C for 500 and 1000 h was investigated. In the studied states of 13.5Cr–Fe3Y ODS steel, transmission electron microscopy (TEM) has detected nanoscale oxides (~10–12 nm) with a number density of ~4–7 ×1021 m−3, pores (~3.0–3.6 nm and ~2–4 × 1022 m−3), as well as the dislocations ~2 × 1014 m−2. According to the energy-dispersive X-ray spectroscopy analysis, oxide particles are mainly enriched in Y and O, and the detected pores contain up to 3 at. % Ar. Atom probe tomography (APT) revealed the presence of clusters (~3–5 nm and ~8–30 × 1022 m−3). The detected clusters also contain Ar within 0.1 at. %. Comparison of the data on the initial state and states after thermal aging revealed an increase in the number density of oxides and a decrease in their size with an increase in the thermal aging time, while the volume of the oxide phase at 1000 h remains the same relative to the initial state in the error limits. Comparison of APT data showed an increase in the volume of clusters during aging up to 500 h and a decrease in the volume at 1000 h. An increase in the number of oxides during thermal aging up to 1000 h correlates with a decrease in the volume of clusters in the same state. There is a significant (~2 times) decrease in pore volume during thermal aging. The density of dislocations increases to ~5 × 1014 m−2 when reaching 1000 h of aging.

About the Authors

S. V. Rogozhkin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. V. Klauz
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Nikitin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Khalyavina
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


O. A. Raznitsyn
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Bogachev
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


N. A. Iskandarov
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. G. Zaluzhny
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Lindau R., Möslang A., Rieth M., Klimiankou M., Materna-Morris E., Alamo A., Tavassoli A.-A.F., Cayron C., Lancha A.-M., Fernandez P., Baluc N., Schäublin R., Diegele E., Filacchioni G., Rensman J.W., Schaaf B. v. d., Lucon E., Dietz W. Present development status of EUROFER and ODS-EUROFER for application in blanket concepts // Fusion Eng. Des. 2005. V. 75–79. P. 989–996.

2. Yvon P., Carré F. Structural materials challenges for advanced reactor systems // J. Nucl. Mater. 2009. V. 385. № 2. P. 217–222.

3. Zinkle S.J., Ghoniem N.M. Operating temperature windows for fusion reactor structural materials // Fusion Eng. Des. 2000. V. 51–52. P. 55–71.

4. Ukai S., Fujiwara M. Perspective of ODS alloys application in nuclear environments // J. Nucl. Mater. 2002. V. 307–311. P. 749–757.

5. Chen T., Gigax J.G., Price L., Chen D., Ukai S., Aydogan E., Maloy S.A., Garner F.A., Shao L. Temperature dependent dispersoid stability in ion-irradiated ferriticmartensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces // Acta Mater. 2016. V. 116. P. 29–42.

6. Certain A., Kuchibhatla S., Shutthanandan V., Hoelzer D.T., Allen T.R. Radiation stability of nanoclusters in nano-structured oxide dispersion strengthened (ODS) steels // J. Nucl. Mater. 2013. V. 434 (1–3). P. 311–321.

7. Yamashita S., Akasaka N., Ukai S., Ohnuki S. Microstructural development of a heavily neutron-irradiated ODS ferritic steel (MA957) at elevated temperature // J. Nucl. Mater. 2007. V. 367–370. P. 202–207.

8. Brodrick J., Hepburn D.J., Ackland G.J. Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels // J. Nucl. Mater. 2014. V. 445 (1–3). P. 291–297.

9. Sakasegawa H., Chaffron L., Legendre F., Brocq M., Boulanger L., Poissonnet S., De Carlan Y., Bechade J., Cozzika T., Malaplate J. Evaluation of threshold stress of the MA957 ODS ferrtic alloy // J. Nucl. Mater. 2009. V. 386–388. P. 511–514.

10. Malaplate J., Mompiou F., Béchade J.-L., Van Den Berghe T., Ratti M. Creep behavior of ODS materials: A study of dislocations/precipitates interactions // J. Nucl. Mater. 2011. V. 417 (1–3). P. 205–208.

11. Ohtsuka S., Kaito T., Kim S., Inoue M., Asayama T., Ohnuma M., Suzuki J. Effect of Nano-Size Oxide Particle Dispersion and δ-Ferrite Proportion on Creep Strength of 9Cr-ODS Steel // Mater. Trans. 2009. V. 50 (7). P. 1778–1784.

12. Cayron C., Rath E., Chu I., Launois S. Microstructural eVution of Y2 O 3 and MgAl 2O 4 ODS EUROFER steels during their elaboration by mechanical milling and hot isostatic pressing // J. Nucl. Mater. 2004. V. 335 (1). P. 83–102.

13. Li Y., Nagasaka T., Muroga T., Kimura A., Ukai S. High-temperature mechanical properties and microstructure of 9Cr oxide dispersion strengthened steel compared with RAFMs // Fusion Eng. Des. 2011. V. 86 (9–11). P. 2495–2499.

14. Beatty T.G., Millan P.P. Progress in the Utilization of an Oxide-Dispersion-Strengthened Alloy for Small Engine Turbine Blades. // SAE Trans. 1984. V. 93. PP. 333–341. http://www.jstor.org/stable/44467148.

15. Klueh R.L., Shingledecker J.P., Swindeman R.W., Hoelzer D.T. Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys // J. Nucl. Mater. 2005. V. 341 (2–3). P. 103–114.

16. Hoffmann J., Rieth M., Lindau R., Klimenkov M., Möslang A., Sandim H.R.Z. Investigation on different oxides as candidates for nano-sized ODS particles in reduced-activation ferritic (RAF) steels // J. Nucl. Mater. 2013. V. 442 (1–3). P. 444–448.

17. Lindau R., Möslang A., Schirra M., Schlossmacher P., Klimenkov M. Mechanical and microstructural properties of a hipped RAFM ODS-steel // J. Nucl. Mater. 2002. V. 307–311. P. 769–772.

18. Alinger M.J., Odette G.R., Hoelzer D.T. On the role of alloy composition and processing parameters in nanocluster formation and dispersion strengthening in nanostuctured ferritic alloys // Acta Mater. 2009. V. 57 (2). P. 392–406.

19. Klimiankou M., Lindau R., Möslang A. Direct correlation between morphology of (Fe, Cr)23 C6 precipitates and impact behavior of ODS steels // J. Nucl. Mater. 2007. V. 367–370. P. 173–178.

20. Kardellass S., Servant C., Selhaoui N., Iddaoudi A., Amar M.A., Bouirden L. A thermodynamic assessment of the iron–yttrium system // J. Alloys Compd. 2014. V. 583. P. 598–606.

21. Oksiuta Z., Lewandowska M., Unifantowicz P., Baluc N., Kurzydlowski K.J. Influence of Y 2O 3 and Fe 2 Y additions on the formation of nano-scale oxide particles and the mechanical properties of an ODS RAF steel // Fusion Eng. Des. 2011. V. 86 (9–11). P. 2417–2420.

22. Hull D., Bacon D.J. Movement of Dislocations. Introduction to Dislocations. 2011. Amsterdam: Elsevier. P. 43–62.

23. Oksiuta Z., Ozieblo A., Perkowski K., Osuchowski M., Lewandowska M. Influence of HIP pressure on tensile properties of a 14Cr ODS ferritic steel // Fusion Eng. Des. 2014. V. 89 (2). P. 137–141.

24. Chen Y.L., Jones A.R., Miller U. Origin of porosity in oxide-dispersion-strengthened alloys produced by mechanical alloying // Metall. Mater. Trans. A. 2002. V. 33 (8). P. 2713–2718.

25. Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов А.С., Разницын О.А., Кириллов С.Е. Прототип атомного зонда с лазерным испарением // Приборы и техника эксперимента. 2017. № 3. С. 129–134. [Rogozhkin S.V., Aleev A.A., Lukyanchuk A.A., Shutov A.S., Raznitsyn O.A., Kirillov S.E. An atom probe tomography prototype with laser evaporation // Instrum. Exp. Tech. 2017. V. 60 (3). P. 428–433.]

26. Разницын О.А. Лукьянчук А.А., Шутов А.С., Рогожкин С.В., Алеев А.А. Оптимизация параметров анализа материалов методами атомно-зондовой томографии с лазерным испарением атомов // Масс-спектрометрия. 2017. Т. 14 (1). С. 33–39. [Raznitsyn O.A., Lukyanchuk A.A., Shutov A.S., Rogozhkin S.V., Aleev A.A. Optimization of Material Analysis Conditions for Laser-Assisted Atom Probe Tomography Characterization // J. Anal. Chem. 2017. V. 72 (14). P. 1404–1410.]

27. Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов А.С. Программный комплекс по восстановлению, обработке и анализу томографических атомно-зондовых данных “КВАНТМ-3D” V1.0.0. Свидетельство о государственной регистрации программы для ЭВМ № 2018661876, рег. 20.09.2018.

28. Oono N.H., Ukai S., Tominaga K., Ebisawa N., Tomura K. Precipitation of various oxides in ODS ferritic steels // J. Mater. Sci. 2019. V. 54 (11). P. 8786–8799.

29. Svoboda J., Horník V., Stratil L., Hadraba H., Mašek B., Khalaj O., Jirková H. Microstructure Evolution in ODS Alloys with a High-Volume Fraction of Nano Oxides // Metals. 2018. V. 8 (12). P. 1079.

30. Рогожкин С.В., Клауз А.В., Халявина А.А., Богачев А.А., Разницын О.А., Никитин А.А., Лукьянчук А.А., Шутов А.С., Залужный А.Г. Исследование влияния термического старения на наноструктуру дисперсно-упрочненных оксидами сталей методами атомно-зондовой томографии // Физика металлов и металловедение. 2025. Т. 126 (1). С. 58–68.

31. Landron C., Maire E., Bouaziz O., Adrien J., Lecarme L., Bareggi A. Validation of void growth models using X-ray microtomography characterization of damage in dual phase steels // Acta Mater. 2011. V. 59 (20). P. 7564–7573.

32. Ahmadi M.R., Sonderegger B., Yadav S.D., Poletti M.C. Modelling and simulation of diffusion driven pore formation in martensitic steels during creep // Mater. Sci. Eng. A. 2018. V. 712. P. 466–477.

33. Brager H.R. The effects of cold working and pre-irradiation heat treatment on void formation in neutron-irradiated type 316 stainless steel // J. Nucl. Mater. 1975. V. 57 (1). P. 103–118.

34. Rogozhkin S.V., Klauz A.V., Gorshkova Yu.E., Bokuchava G.D., Khomich A.A., Bogachev A.A., Nikitin A.A., Zaluzhny A.G. Study of the effect of thermal aging on the nanostructure of oxide dispersion-strengthened steels by small-angle X-ray scattering // J. Surf. Invest.: Xray, Synchrotron Neutron Tech. 2024. V. 18 (6). P. 1401–1409.


Review

For citations:


Rogozhkin S.V., Klauz A.V., Nikitin A.A., Khalyavina A.A., Raznitsyn O.A., Bogachev A.A., Iskandarov N.A., Zaluzhny A.G. NANOSTRUCTURE OF OXIDE DISPERSION-STRENGTHENED STEEL MECHANICALLY ALLOYED WITH INTERMETALLIC FE3Y. Nuclear Physics and Engineering. 2025;16(6):779-794. (In Russ.) https://doi.org/10.56304/S2079562925060247. EDN: QXPSAA

Views: 24

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)