Atom Probe Tomography of High-Entropy Alloy AlCoCrFeNi
https://doi.org/10.1134/S2079562920010145
Abstract
This paper represents results of study of the AlCoCrFeNi high-entropy alloy by means of atom probe tomography. Two phases were found, one of which is enriched in Fe and Cr, and the other in Ni and Al. Due to the complex surface morphology and spatial configuration of the phases, their analysis was carried out by various statistical methods. The Fe−Cr phase has a honeycomb structure that contains Co particles with a size from 1 to 10 nm. Enrichment of the cell boundaries with Fe and Cr atoms reaches 50 at. %. In turn, the Al–Ni phase is enriched with each of these elements up to 30 at. % and contains nanoscale precipitates of Fe and Cr atoms. The number density of these clusters is ~6 ⋅ 1017 cm–3.
About the Authors
S. V. RogozhkinRussian Federation
Moscow, 117218
Moscow, 115409 R
A. S. Shutov
Russian Federation
Moscow, 117218
A. A. Khomich
Russian Federation
Moscow, 117218
A. A. Nikitin
Russian Federation
Moscow, 117218
Moscow, 115409 R
A. A. Lukyanchuk
Russian Federation
Moscow, 117218
O. A. Raznitsyn
Russian Federation
Moscow, 117218
L. Meshi
Israel
P.O. Box 653, Beer-Sheva
References
1. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. // Adv. Eng. Mater. 2004. V. 6. No. 5. P. 299–303.
2. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. // Mater. Sci. Eng. A. 2004. V. 375–377. P. 213–218.
3. Yeh J.-W. // J. Miner. Met. Mater. Soc. 2015. V. 67. P. 2254–2261.
4. Tsai K.-Y., Tsai M.-H., Yeh J.-W. // Acta Mater. 2013. V. 61. P. 4887–4897.
5. Egami T., Guo W., Rack P.D., Nagase T. // Metall. Mater. Trans. A. 2014. V. 45. P. 180–183.
6. Zinkle S.J., Snead L.L. // Ann. Rev. Mater. Res. 2014. V. 44. P. 241–267.
7. Salishchev G.A., Tikhonovsky M.A., Shaysultanov D.G., Stepanov N.D., Kuznetsov A.V., Kolodiy I.V., Tortika A.S., Senkov O.N. // J. Alloys Compd. 2014. V. 591. P. 11.
8. Gali A., George E.P. // Intermetallics. 2013. V. 39. P. 74.
9. Kang M., Won J.W., Kwon J.B, Na Y.S. // Mater. Sci. Eng. A. 2017. V. 707. P. 16.
10. Gludovatz B., Hohenwarter A., Catoor D., Chang E.H., George E.P., Ritchie R.O., // Science. 2014. V. 345. No. 6201. P. 1153.
11. Hemphill M.A., Yuan T., Wang G.Y., Yeh J.W., Tsai C.W., Chuang A., Liaw P.K. // Acta Mater. 2012. V. 60. P. 5723–5734.
12. Chuang M.-H., Tsai M.H., Wang W.-R., Lin S.-J., Yeh J.-W. // Acta Mater. 2011. V. 59(16). P. 6308.
13. Tong C.J., Chen M.R., Chen S.K., Yeh J.W., Shun T.T., Lin S.J., Chang S.Y., // Metall. Mater. Trans. A. 2005. V. 36A. P. 1263–1271.
14. Yeh J.W., Chen Y.L., Lin S.J., Chen S.K. // High-Entropy Alloys—a New Era of Exploitation, in: Ramirez H.B., Cabanas-Moreno J.G., Calderon-Benavides H.A. , Ishizaki K., Salinas Rodriguez A. (Eds.), Advanced Structural Materials. 2007. V. III. P. 1–9.
15. Singh S., Wanderka N., Murty B.S., Glatze U.l, Ban-hart J. // Intermetallics. 2011. V. 59. P. 182–190.
16. Lin C.M., Tsai H.L. // Intermetallics. 2011. V. 19. P. 288–294.
17. Shun T.T., Du Y.C. // J. Alloys Compd. 2009. V. 479. P. 157–160.
18. Wang Y.P., Li B.S., Ren M.X., Yang C., Fu H.Z. // Mater. Sci. Eng. A. 2008. V. 491. P. 154–158.
19. Shun T.T., Hung C.H., Lee C.F. // J. Alloys Compd. 2010. V. 495. P. 55–58.
20. Linden Y., Pinkas M., Munitz A., Meshi L. // Scr. Mater. 2017. V. 139. P. 49–52.
21. Rogozhkin S.V., Aleev A.A., Lukyanchuk A.A., Shutov A.S., Raznitsyn O.A., Kirillov S.E., // Instrum. Exp. Tech. 2017. V. 60. P. 428–433.
22. Алеев А.А., Рогожкин С.В., Лукьянчук А.А., Шутов А.С., Разницын О.А., Никитин А.А., Искандаров Н.А., Корчуганова О.А., Кириллов С.Е. Программный комплекс по восстановлению, обработке и анализу томографических атомно-зондовых данных “КВАНТМ-3D” V1.0.0. Свидетельство о государственной регистрации программы для ЭВМ № 2018661876, рег. 20.09.2018
23. Raznitsyn O.A., Lukyanchuk A.A., Shutov A.S., Rogozhkin S.V., Aleev A.A. // J. Anal. Chem. 2017. V. 72. No. 14. P. 1404–1410.
24. Miller M.K. Atom Probe Tomography: Analysis at the Atomic Level. 2000. New York: Kluwer Academic.
25. Godfrey T.J., Hetherington M.G., Sassen J.M., Smith G.D.W. // J. de Physique. 1988. V. 49. No. C6. P. 421–426
26. Hyde J.M., Cerezo A., Williams T.J. // Ultramicroscopy. 2009. V. 109. P. 502–509.
27. Gault B., Moody M.P. // Atom Probe Microscopy. Springer Ser. Mater. Sci. 2012. No. 160. P. 240–242.
28. Lorensen W.E., Cline H.E. // Comput. Graphics. 1987. V. 21. No. 4. P. 163–169.
29. Gault B., Moody M.P. // Atom Probe Microscopy. Springer Ser. Mater. Sci. 2012. V. 160. P. 233–235.
30. Epanechnikov V.A. // Theory Prob. Appl. J. 1969. V. 14. No. 1. P. 153–158.
31. Miller M.K., Kenik E.A. // Microsc. Microanal. 2004. V. 10. No. 3. P. 336–341.
32. Miller M.K., Hyde J.M., Hetherington M.G., Cerezo A., Smith G.D.W., Elliott C.M. // Acta Metall. Mater. 1995. V. 43. P. 3385–3401.
33. Manzoni A., Daoud H., Völkl R., Glatzel U., Wanderka N. // Ultramicroscopy. 2013. V. 132. P. 212–215.
Review
For citations:
Rogozhkin S.V., Shutov A.S., Khomich A.A., Nikitin A.A., Lukyanchuk A.A., Raznitsyn O.A., Meshi L. Atom Probe Tomography of High-Entropy Alloy AlCoCrFeNi. Nuclear Physics and Engineering. 2020;11(3):139-151. (In Russ.) https://doi.org/10.1134/S2079562920010145