PRINCIPLES OF CHEMICAL DESIGNING OF STYRENE-BASED PLASTIC SCINTILLATORS DOPED WITH QUANTUM DOTS
https://doi.org/10.56304/S2079562925010075
EDN: CQGLIO
Abstract
Plastic scintillators based on polystyrene and other polymers of the vinyl aromatic row (polyvinyltoluene, polyvinylxylene, etc.) have long been used in scintillation detectors because of their short fluorescence lifetimes, low cost, and relative ease of fabrication. On the other hand, such materials have a small light output. Plastic scintillators are usually doped with fluorescent organic dyes to impart scintillation properties to the polymer matrix and increase the light yield. In recent years, considerable interest has been aroused by studies aimed at the use of semiconductor nanocrystals-quantum dots—as dopants for plastic scintillators based on polymer matrices. One of the most promising materials for this purpose are considered to be CsPbBr3 perovskite nanocrystals and CdSe/ZnS quantum dots of core/shell type. These materials demonstrate high quantum yield values, have high effective atomic number and can be effectively integrated into polymer matrices while preserving their structural and optical properties. Thus, it can be hypothesized that doping plastic scintillators with quantum dots can significantly improve their light yield and increase their radiation resistance. Here, we propose an approach to the chemical design of plastic scintillators doped with quantum dots, investigate their radioluminescence and describe the optimal parameters for the fabrication of such composite scintillators by radical polymerization of para-methylstyrene.
About the Authors
A. A. KnyshRussian Federation
M. A. Kirsanov
Russian Federation
V. V. Sosnovtsev
Russian Federation
I. R. Nabiev
Russian Federation
P. S. Samokhvalov
Russian Federation
References
1. Hall H. // Rev. Mod. Phys. 1936. V. 8 (4). P. 358–397.
2. Nikl M., Yoshikawa A. // Adv. Opt. Mater. 2015. V. 3 (4). P. 463–481.
3. Yaffe M.J., Rowlands J.A. // Phys. Med. Biol. 1997. V. 42 (1). P. 1–39.
4. Wang Z., Dujardin C., Freeman M.S., et al. // IEEE Trans. Nucl. Sci. 2023. V. 70 (7). P. 1244–1280.
5. Pagano F., Kratochwil N., Salomoni M., et al. // Phys. Med. Biol. 2022. V. 67 (13). P. 135010.
6. Khoshakhlagh M., Islamian J. P., Abedi S. M., and Mahmoudian B. // World J. Nucl. Med. 2015. V. 14 (03). P. 156–159.
7. Lu L., Sun M., Wu T., et al. // Nanoscale Adv. 2022. V. 4 (3). P. 680–696.
8. Liu C., Li Z., Hajagos T.J., et al. // ACS Nano. 2017. V. 11 (6). P. 6422–6430.
9. Yanagida T. // Proc. Jpn. Acad., Ser. B. 2018. V. 94 (2). P. 75–97.
10. Maddalena F., Tjahjana L., Xie A., et al. // Crystals. 2019. V. 9 (2). P. 88.
11. Zhang Y., Sun R., Ou X., et al. // ACS Nano. 2019. V. 13 (2). P. 2520–2525.
12. Chen J., Zhou Y., Fu Y., et al. // Chem. Rev. 2021. V. 121 (20). P. 12112–12180.
13. Кныш А.А., Ткач А.А., Гулевич Д., Набиев И., Самохвалов П.С. // Ядерн. физ. инжинир. Т. 13 (5). С. 439−445 [Knysh A., Tkach A., Gulevich D., et al. // Phys. At. Nucl. 2022. V. 85 (10). P. 1619–1624].
14. Zaffalon M.L., Cova F., Liu M., et al. // Nat. Photon. 2022. V. 16 (12). P. 860–868.
15. Chen Q., Wu J., Ou X., et al. // Nature. 2018. V. 561 (7721). P. 88–93.
16. Jones J., Mills C., Mogensen M., Lee C. // West J. Emerg. Med.. 2012. V. 13 (2). P. 202–210.
17. He Y., Petryk M., Liu Z., et al. // Nat. Photonics. 2021. V. 15 (1). P. 36–42.
18. Létant S.E., Wang T.-F. // Nano Lett. 2006. V. 6 (12). P. 2877–2880.
19. Кныш А.А., Сосновцев В.В., Гулевич Д.Г., Набиев И.Р., Самохвалов П.С. // Ядерн. физ. инжинир. 2025. Т. 16 (3). С. 417−422 [Knysh A., Sosnovtsev V., Gulevich D., et al. // Phys. At. Nucl. 2023. V. 86 (11). P. 2535–2539].
20. Gulevich D.G., Tkach A.A., Nabiev I.R., et al. // Tech. Phys. 2023. V. 68 (2). P. 241.
21. Nuri H.L., Pancoko M., Jami A., et al. // Spektra. 2022. V. 7 (3). P. 141–150.
22. Cardoso Dos Santos M., Algar W.R., Medintz I.L., and Hildebrandt N. // Trends Anal. Chem. 2020. V. 125. P. 115819.
Review
For citations:
Knysh A.A., Kirsanov M.A., Sosnovtsev V.V., Nabiev I.R., Samokhvalov P.S. PRINCIPLES OF CHEMICAL DESIGNING OF STYRENE-BASED PLASTIC SCINTILLATORS DOPED WITH QUANTUM DOTS. Nuclear Physics and Engineering. 2025;16(5):703-709. (In Russ.) https://doi.org/10.56304/S2079562925010075. EDN: CQGLIO
JATS XML