CACO3 MICROPARTICLE-BASED CARRIERS: OPTIMIZATION OF BSA LOADING BY COPRECIPITATION
https://doi.org/10.56304/S2079562925010026
EDN: URQBBB
Abstract
Cancer, a major global cause of death, requires more selective treatments to minimize side effects. Immunotherapy that uses antibodies targeting immune checkpoints is a promising approach, but it has limitations, mainly related with poor tumor penetration and consequent treatment resistance. Biocompatible and biodegradable calcium carbonate microparticles offer a solution to this problem due to the possibilities of encapsulation and controlled release of these biomolecules, which increase their therapeutic efficacy while reducing adverse effects. This study focuses on optimizing the synthesis of these microparticles and improving protein loading with the use of the coprecipitation approach, with bovine serum albumin as a model protein. The procedures developed make it possible to obtain protein carriers with improved morphological characteristics and a loading efficiency of more than 90%.
About the Authors
L. BinyFrance
D. Kalenichenko
France
I. Nabiev
France
A. Sukhanova
France
References
1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. // CA-Cancer J. Clin. 2021. V. 71 (3). P. 209.
2. Sanmamed M.F., Berraondo P., Rodriguez-Ruiz M.E., Melero I. // Nat. Cancer. 2022. V. 3 (6). P. 665.
3. Yang E.Y., Shah K. // Front. Oncol. 2020. V. 10. P. 1182.
4. Castrignano C., Di Scipio F., Franco F., Mognetti B., Berta G.N. // Pharmaceuticals. 2023. V. 16 (6). P. 794.
5. Sukhorukov G.B., Volodkin D.V., Günther A.M., Petrov A.I., Shenoy D.B., Möhwald H. // J. Mater. Chem. 2004. V. 14 (14). P. 2073.
6. Svenskaya Y., Pallaeva T. // Pharmaceutics. 2023. V. 15. P. 2574.
7. Niu Y.Q., Liu J.H., Aymonier C., Fermani S., Kralj D., Falini G., et al. // Chem. Soc. Rev. 2022. V. 51 (18). P. 7883.
8. Li S., Lian B. // Minerals. 2023. V. 13 (9). P. 1136.
9. Roth R., Schoelkopf J., Huwyler J., Puchkov M. // Eur. J. Pharm. Biopharm. 2018. V. 122. P. 96.
10. Alford A., Tucker B., Kozlovskaya V., Chen J., Gupta N., Caviedes R., et al. // Polymers. 2018. V. 10 (12). P. 1342.
11. Parakhonskiy B.V., Haase A., Antolini R. // Angew. Chem., Int. Ed. 2012. V. 51. P. 1195.
12. Balabushevich N.G., Kovalenko E.A., Le-Deygen I.M., Filatova L.Y., Volodkin D., Vikulina A.S. // Mater. Des. 2019. V. 182. P. 108020.
13. Wei Y., Sun R., Su H., Xu H., Zhang L., Huang D., et al. // Colloids Surf. B. 2021. V. 199. P. 1115.
14. Yoshida K., Ono T., Kashiwagi Y., Takahashi S., Sato K., Anzai J.I. // Polymers. 2015. V. 7. P. 1269.
15. Kalenichenko D., Nifontova G., Karaulov A., Sukhanova A., Nabiev I. // Nanomaterials. 2021. V. 11. P. 3055.
16. Lu J., Jiao Y., Cao G., Liu Z. // Chem. Eng. J. 2021. V. 420. P. 129746.
17. Haystead J., Gilmour K., Sherry A., Dade-Robertson M., Zhang M. // J. Appl. Microbiol. 2024. V. 135 (1). P. 309.
18. Duranoğlu D., Yün M.K. // Phys. Scr. 2023. V. 99 (1). P. 015003.
Review
For citations:
Biny L., Kalenichenko D., Nabiev I., Sukhanova A. CACO3 MICROPARTICLE-BASED CARRIERS: OPTIMIZATION OF BSA LOADING BY COPRECIPITATION. Nuclear Physics and Engineering. 2025;16(5):693-697. (In Russ.) https://doi.org/10.56304/S2079562925010026. EDN: URQBBB
JATS XML