Preview

Nuclear Physics and Engineering

Advanced search

CACO3 MICROPARTICLE-BASED CARRIERS: OPTIMIZATION OF BSA LOADING BY COPRECIPITATION

https://doi.org/10.56304/S2079562925010026

EDN: URQBBB

Abstract

Cancer, a major global cause of death, requires more selective treatments to minimize side effects. Immunotherapy that uses antibodies targeting immune checkpoints is a promising approach, but it has limitations, mainly related with poor tumor penetration and consequent treatment resistance. Biocompatible and biodegradable calcium carbonate microparticles offer a solution to this problem due to the possibilities of encapsulation and controlled release of these biomolecules, which increase their therapeutic efficacy while reducing adverse effects. This study focuses on optimizing the synthesis of these microparticles and improving protein loading with the use of the coprecipitation approach, with bovine serum albumin as a model protein. The procedures developed make it possible to obtain protein carriers with improved morphological characteristics and a loading efficiency of more than 90%.

About the Authors

L. Biny
Université de Reims Champagne-Ardenne
France


D. Kalenichenko
Université de Reims Champagne-Ardenne; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
France


I. Nabiev
Université de Reims Champagne-Ardenne; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
France


A. Sukhanova
Université de Reims Champagne-Ardenne
France


References

1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et al. // CA-Cancer J. Clin. 2021. V. 71 (3). P. 209.

2. Sanmamed M.F., Berraondo P., Rodriguez-Ruiz M.E., Melero I. // Nat. Cancer. 2022. V. 3 (6). P. 665.

3. Yang E.Y., Shah K. // Front. Oncol. 2020. V. 10. P. 1182.

4. Castrignano C., Di Scipio F., Franco F., Mognetti B., Berta G.N. // Pharmaceuticals. 2023. V. 16 (6). P. 794.

5. Sukhorukov G.B., Volodkin D.V., Günther A.M., Petrov A.I., Shenoy D.B., Möhwald H. // J. Mater. Chem. 2004. V. 14 (14). P. 2073.

6. Svenskaya Y., Pallaeva T. // Pharmaceutics. 2023. V. 15. P. 2574.

7. Niu Y.Q., Liu J.H., Aymonier C., Fermani S., Kralj D., Falini G., et al. // Chem. Soc. Rev. 2022. V. 51 (18). P. 7883.

8. Li S., Lian B. // Minerals. 2023. V. 13 (9). P. 1136.

9. Roth R., Schoelkopf J., Huwyler J., Puchkov M. // Eur. J. Pharm. Biopharm. 2018. V. 122. P. 96.

10. Alford A., Tucker B., Kozlovskaya V., Chen J., Gupta N., Caviedes R., et al. // Polymers. 2018. V. 10 (12). P. 1342.

11. Parakhonskiy B.V., Haase A., Antolini R. // Angew. Chem., Int. Ed. 2012. V. 51. P. 1195.

12. Balabushevich N.G., Kovalenko E.A., Le-Deygen I.M., Filatova L.Y., Volodkin D., Vikulina A.S. // Mater. Des. 2019. V. 182. P. 108020.

13. Wei Y., Sun R., Su H., Xu H., Zhang L., Huang D., et al. // Colloids Surf. B. 2021. V. 199. P. 1115.

14. Yoshida K., Ono T., Kashiwagi Y., Takahashi S., Sato K., Anzai J.I. // Polymers. 2015. V. 7. P. 1269.

15. Kalenichenko D., Nifontova G., Karaulov A., Sukhanova A., Nabiev I. // Nanomaterials. 2021. V. 11. P. 3055.

16. Lu J., Jiao Y., Cao G., Liu Z. // Chem. Eng. J. 2021. V. 420. P. 129746.

17. Haystead J., Gilmour K., Sherry A., Dade-Robertson M., Zhang M. // J. Appl. Microbiol. 2024. V. 135 (1). P. 309.

18. Duranoğlu D., Yün M.K. // Phys. Scr. 2023. V. 99 (1). P. 015003.


Review

For citations:


Biny L., Kalenichenko D., Nabiev I., Sukhanova A. CACO3 MICROPARTICLE-BASED CARRIERS: OPTIMIZATION OF BSA LOADING BY COPRECIPITATION. Nuclear Physics and Engineering. 2025;16(5):693-697. (In Russ.) https://doi.org/10.56304/S2079562925010026. EDN: URQBBB

Views: 12

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)