Preview

Nuclear Physics and Engineering

Advanced search

LUTETIUM FLUORIDE (LUF3) NANOPARTICLES AS PROMISING NANORADIOSENSITIZERS FOR MELANOMA THERAPY

https://doi.org/10.56304/S2079562925010269

EDN: LJIHKY

Abstract

Results are presented from studying physicochemical characteristics and radiosensitizing properties of a new type of lutetium fluoride (LuF3) nanoparticle as a promising nanoradiosensitizer for X-ray irradiation of B16/F10 melanoma cells. A comprehensive analysis is performed of functional characteristics of synthesized LuF3 nanoparticles, their cytotoxicity, and their radiosensitizing effect in vitro. It is shown that LuF3 nanoparticles have a hydrodynamic diameter of less than 200 nm. Colloidal sol obtained on their basis is highly stable as a result of using the biocompatible stabilizer ammonium citrate. LuF3 nanoparticles have a cytotoxic and radiosensitizing effect on melanoma cells in concentrations of 116 mg/mL and higher by reducing their metabolic activity and membrane mitochondrial potential while initiating apoptosis. Such nanomaterial can form the basis of promising modern approaches to increasing the effectiveness of radiation therapy.

About the Authors

D. A. Vinnik
Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation


M. V. Romanov
Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation


S. N. Koryakin
Tsyb Medical Radiological Research Centre, National Medical Research Radiological Centre, Ministry of Health of the Russian Federation
Russian Federation


V. K. Ivanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation


A. L. Popov
Institute for Theoretical and Experimental Biophysics, Russian Academy of Sciences
Russian Federation


References

1. Mundekkad D., Cho W.C. // Int. J. Mol. Sci. 2022. V. 23 (3). P. 1685. https://doi.org/10.3390/ijms23031685

2. Ferro-Flores G., Ancira-Cortez A., Ocampo-García B., Meléndez-Alafort L. // Nanomaterials. 2024. V. 14 (3). P. 296. https://doi.org/10.3390/nano14030296

3. World Cancer Report. Stewart B.W., Wild C.P. (Eds.). 2014. Lyon: International Agency for Research on Cancer (WHO). https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014.

4. Types of Cancer Treatment. National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types.

5. Radiotherapy in Cancer Care: Facing the Global Challenge. Rosenblatt E., Zubiarreta E. (Eds.). 2017. Vienna: IAEA. https://www.iaea.org/publications/10627/radio-therapy-in-cancer-care-facing-the-global-challenge.

6. De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. // Science. 2013. V. 339. P. 535. https://doi.org/10.1126/science.1222453

7. Chen G., Roy I., Yang C., Prasad P.N. // Chem. Rev. 2016. V. 116. P. 2826–2885. https://doi.org/10.1021/acs.chemrev.5b00148

8. Lane L.A., Qian X., Nie S. // Chem. Rev. 2015. V. 115. P. 10489–10529. https://doi.org/10.1021/acs.chemrev.5b00265

9. Lim E.-K., Kim T., Paik S., Haam S., Huh Y.-M., Lee K. // Chem. Rev. 2015. V. 115. P. 327–394. https://doi.org/10.1021/cr300213b

10. Peng L., Hu L., Fang X. // Adv. Funct. Mater. 2014. V. 24. P. 2591–2610. https://doi.org/10.1002/adfm.201303367

11. Xie J., Gong L., Zhu S., Yong Y., Gu Z., Zhao Y. // Adv. Mater. 2019. V. 31. P. 1802244. https://doi.org/10.1002/adma.201802244

12. Liu Y., Zhang P., Li F., Jin X., Li J., Chen W., Li Q. // Theranostics. 2018. V. 8. P. 1824–1849. https://doi.org/10.7150/thno.22172

13. Song G., Cheng L., Chao Y., Yang K., Liu Z. // Adv. Mater. 2017. V. 29. P. 1700996. https://doi.org/10.1002/adma.201700996

14. Sisin N.N.T., Mat N.F.C., Rashid R.A., Dollah N., Razak K.A., Geso M., Algethami M., Rahman W.N. // Int. J. Nanomed. 2022. V. 17. P. 3853–3874. https://doi.org/10.2147/ijn.s370478

15. Sun H., Wang X., Zhai Sh. // Nanomaterials. 2020. V. 10 (3). P. 504. https://doi.org/10.3390/nano10030504

16. Rashid R.A., Abidin S.Z., Anuar M.A.K., et al. // Open-Nano. 2019. V. 4. P. 100027.

17. Hao Y., Altundal Y., Moreau M., Sajo E., Kumar R., Ngwa W. // Phys. Med. Biol. 2015. V. 60 (18). P. 7035–7043.

18. Rahman W.N., Corde S., Yagi N., Abdul Aziz S.A., Annabell N., Geso M. // Int. J. Nanomed. 2014. V. 9. P. 2459–2467.

19. Delorme R., Taupin F., Flaender M., Ravanat J.L., Champion C., Agelou M., Elleaume H. // Med. Phys. 2017. V. 44 (11). P. 5949–5960.

20. Gerken L.R.H., Gerdes M.E., Pruschy M., Herrmann I.K. // Mater. Horiz. 2023. V. 10 (10). P. 4059–4082.

21. Cooper D.R., Kudinov K., Tyagi P. // Phys. Chem. Chem. Phys. 2014. V. 16 (24). P. 12441–12453.

22. Kudinov K.A., Cooper D.R., Ha J.K., Hill C.K., Nadeau J.L., Seuntjens J.P., Bradforth S.E. // Radiat. Res. 2018. V. 190 (1). P. 28–36.


Review

For citations:


Vinnik D.A., Romanov M.V., Koryakin S.N., Ivanov V.K., Popov A.L. LUTETIUM FLUORIDE (LUF3) NANOPARTICLES AS PROMISING NANORADIOSENSITIZERS FOR MELANOMA THERAPY. Nuclear Physics and Engineering. 2025;16(5):687-692. (In Russ.) https://doi.org/10.56304/S2079562925010269. EDN: LJIHKY

Views: 14

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)