LUTETIUM FLUORIDE (LUF3) NANOPARTICLES AS PROMISING NANORADIOSENSITIZERS FOR MELANOMA THERAPY
https://doi.org/10.56304/S2079562925010269
EDN: LJIHKY
Abstract
Results are presented from studying physicochemical characteristics and radiosensitizing properties of a new type of lutetium fluoride (LuF3) nanoparticle as a promising nanoradiosensitizer for X-ray irradiation of B16/F10 melanoma cells. A comprehensive analysis is performed of functional characteristics of synthesized LuF3 nanoparticles, their cytotoxicity, and their radiosensitizing effect in vitro. It is shown that LuF3 nanoparticles have a hydrodynamic diameter of less than 200 nm. Colloidal sol obtained on their basis is highly stable as a result of using the biocompatible stabilizer ammonium citrate. LuF3 nanoparticles have a cytotoxic and radiosensitizing effect on melanoma cells in concentrations of 116 mg/mL and higher by reducing their metabolic activity and membrane mitochondrial potential while initiating apoptosis. Such nanomaterial can form the basis of promising modern approaches to increasing the effectiveness of radiation therapy.
About the Authors
D. A. VinnikRussian Federation
M. V. Romanov
Russian Federation
S. N. Koryakin
Russian Federation
V. K. Ivanov
Russian Federation
A. L. Popov
Russian Federation
References
1. Mundekkad D., Cho W.C. // Int. J. Mol. Sci. 2022. V. 23 (3). P. 1685. https://doi.org/10.3390/ijms23031685
2. Ferro-Flores G., Ancira-Cortez A., Ocampo-García B., Meléndez-Alafort L. // Nanomaterials. 2024. V. 14 (3). P. 296. https://doi.org/10.3390/nano14030296
3. World Cancer Report. Stewart B.W., Wild C.P. (Eds.). 2014. Lyon: International Agency for Research on Cancer (WHO). https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-2014.
4. Types of Cancer Treatment. National Cancer Institute. https://www.cancer.gov/about-cancer/treatment/types.
5. Radiotherapy in Cancer Care: Facing the Global Challenge. Rosenblatt E., Zubiarreta E. (Eds.). 2017. Vienna: IAEA. https://www.iaea.org/publications/10627/radio-therapy-in-cancer-care-facing-the-global-challenge.
6. De Volder M.F.L., Tawfick S.H., Baughman R.H., Hart A.J. // Science. 2013. V. 339. P. 535. https://doi.org/10.1126/science.1222453
7. Chen G., Roy I., Yang C., Prasad P.N. // Chem. Rev. 2016. V. 116. P. 2826–2885. https://doi.org/10.1021/acs.chemrev.5b00148
8. Lane L.A., Qian X., Nie S. // Chem. Rev. 2015. V. 115. P. 10489–10529. https://doi.org/10.1021/acs.chemrev.5b00265
9. Lim E.-K., Kim T., Paik S., Haam S., Huh Y.-M., Lee K. // Chem. Rev. 2015. V. 115. P. 327–394. https://doi.org/10.1021/cr300213b
10. Peng L., Hu L., Fang X. // Adv. Funct. Mater. 2014. V. 24. P. 2591–2610. https://doi.org/10.1002/adfm.201303367
11. Xie J., Gong L., Zhu S., Yong Y., Gu Z., Zhao Y. // Adv. Mater. 2019. V. 31. P. 1802244. https://doi.org/10.1002/adma.201802244
12. Liu Y., Zhang P., Li F., Jin X., Li J., Chen W., Li Q. // Theranostics. 2018. V. 8. P. 1824–1849. https://doi.org/10.7150/thno.22172
13. Song G., Cheng L., Chao Y., Yang K., Liu Z. // Adv. Mater. 2017. V. 29. P. 1700996. https://doi.org/10.1002/adma.201700996
14. Sisin N.N.T., Mat N.F.C., Rashid R.A., Dollah N., Razak K.A., Geso M., Algethami M., Rahman W.N. // Int. J. Nanomed. 2022. V. 17. P. 3853–3874. https://doi.org/10.2147/ijn.s370478
15. Sun H., Wang X., Zhai Sh. // Nanomaterials. 2020. V. 10 (3). P. 504. https://doi.org/10.3390/nano10030504
16. Rashid R.A., Abidin S.Z., Anuar M.A.K., et al. // Open-Nano. 2019. V. 4. P. 100027.
17. Hao Y., Altundal Y., Moreau M., Sajo E., Kumar R., Ngwa W. // Phys. Med. Biol. 2015. V. 60 (18). P. 7035–7043.
18. Rahman W.N., Corde S., Yagi N., Abdul Aziz S.A., Annabell N., Geso M. // Int. J. Nanomed. 2014. V. 9. P. 2459–2467.
19. Delorme R., Taupin F., Flaender M., Ravanat J.L., Champion C., Agelou M., Elleaume H. // Med. Phys. 2017. V. 44 (11). P. 5949–5960.
20. Gerken L.R.H., Gerdes M.E., Pruschy M., Herrmann I.K. // Mater. Horiz. 2023. V. 10 (10). P. 4059–4082.
21. Cooper D.R., Kudinov K., Tyagi P. // Phys. Chem. Chem. Phys. 2014. V. 16 (24). P. 12441–12453.
22. Kudinov K.A., Cooper D.R., Ha J.K., Hill C.K., Nadeau J.L., Seuntjens J.P., Bradforth S.E. // Radiat. Res. 2018. V. 190 (1). P. 28–36.
Review
For citations:
Vinnik D.A., Romanov M.V., Koryakin S.N., Ivanov V.K., Popov A.L. LUTETIUM FLUORIDE (LUF3) NANOPARTICLES AS PROMISING NANORADIOSENSITIZERS FOR MELANOMA THERAPY. Nuclear Physics and Engineering. 2025;16(5):687-692. (In Russ.) https://doi.org/10.56304/S2079562925010269. EDN: LJIHKY
JATS XML