Preview

Nuclear Physics and Engineering

Advanced search

FORMATION OF A NICKEL ALLOY POWDER COATING ON THIN-WALLED TUBES BY HIGH-SPEED LASER CLADDING

https://doi.org/10.56304/S2079562924060125

EDN: YVHSYB

Abstract

A 1350-00 nickel alloy powder coating has been deposited on thin-walled 12Kh18N10T stainless steel tubes by high-speed laser cladding. Cladding has been performed using cw radiation from a 10-kW ytterbium fiber laser on a robotic complex. The shapes of the gas–powder jet for Fraunhofer nozzles have been determined. The influence of the laser radiation power and the amount of supplied powder on the structure of the coatings obtained has been evaluated. Metallographic studies of the obtained samples have been carried out. It has been shown that laser cladding under optimal conditions provide an almost non-porous coating with minimal penetration of the base material, ensuring metallurgical fusion. According to the X-ray spectral microanalysis, the chemical composition of the deposited coating practically does not differ from the chemical composition of the used powder. The thickness of the deposited layer is adjusted within 100–300 μm in one pass, depending on the deposition modes. The fusion line is identical in structure, which shows a high uniformity of heat input during cladding. The size of the thermal influence region in the substrate material varies within 50–200 μm, depending on the deposition modes.

About the Authors

E. S. Ermilova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. R. Ovsyankin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Gavrikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


V. N. Petrovskiy
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


P. S. Dzhumaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


V. I. Polsky
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Yu Z., Li L., Zhang D., et al. // Chin. J. Mech. Eng. 2021. V. 34. P. 92–106. https://doi.org/10.1186/s10033-021-00599-8

2. Jinoop A.N., Paul C.P., Bindra K.S. // Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 2019. V. 233 (11). P. 2376–2400.

3. Tobar M.J., Álvarez C., Amado J.M., Rodríguez G., Yáñez A. // Surf. Coat. Technol. 2006. V. 200 (22–23). P. 6313–6317.

4. Lin Y.H., Ping X.L., Kuang J.C., et al. // Rev. Adv. Mater. Sci. 2020. V. 59 (1). P. 340–351.

5. Джумаев П.С., Петровский В.Н., Польский В.И., Якушин В.Л. // Цветн. металлы. 2015. № 1. С. 31–36. 6. Петровский В.Н., Штамм В.Г., Джумаев П.С.,

6. Польский В.И. // Ядерн. физ. инжинир. 2012. Т. 3 (4). С. 333.

7. Geng T.Y., Wang C.S. // Mater. Sci. 2019. V. 25 (3). P. 252–258.

8. Shen Y.F., Fu H.G., Pan X.L., et al. // Materialwissenschaft Werkstofftechnik. 2020. V. 51 (1). P. 54–65.

9. Schopphoven T., Gasser A., Wissenbach K. // J. Laser Appl. V. 28 (2). P. 022501.

10. Li T., Zhang L., Bultel G.P., Schopphoven T., Gasser A., Schleifenbaum J.H., Poprawe R. // Coatings. 2019. V. 9. P. 778. https://doi.org/10.3390/coatings9120778

11. Wang K., Du D., Liu G., Pu Z., Chang B., Ju J. // Corros. Sci. V. 176. P. 108922.

12. Li T., Zhang L., Chen G., Schopphoven T., Gasser A., Poprawe R. // J. Manuf. Processes. 2023. V. 85. P. 1054–1065.

13. Yan J., Battiato I., Fadel G. // Int. J. Adv. Manuf. Technol. 2017. V. 91. P. 605–616.

14. Cortina M., Arrizubieta J.I., Ruiz J.E., et al. // Procedia CIRP. 2018. V. 68. P. 387–392.

15. Liu Z., Zhang H.C., Peng S., et al. // Addit. Manuf. 2019. V. 105. P. 4107–4121.

16. Lin J. // J. Mater. Process. Tech. 2000. V. 105 (1–2). P. 17–23.

17. Kovalev O.B., Kovaleva I.O., Smurov I.Y. // J. Mater. Process. Technol. 2017. V. 249. P. 118–127.

18. Nie P., Ojo O.A., Li Z. // Surf. Coat. Technol. 2014. V. 258. P. 1048–1059.

19. Eisenbarth D., Borges Esteves P.M., Wirth F., Wegener K. // Surf. Coat. Technol. 2019. V. 362. P. 397–408.

20. Khamidullin B.A., Tsivilskiy I.V., Gorunov A.I., Gilmutdinov A.Kh. // Surf. Coat. Tech. 2019. V. 364. P. 430–443.

21. Zhang J., Yang L., Zhang W., Qiu J., Xiao H., Liu Y. // Opt. Laser Eng. 2020. V. 126. P. 105873.


Review

For citations:


Ermilova E.S., Ovsyankin I.R., Gavrikov A.A., Petrovskiy V.N., Dzhumaev P.S., Polsky V.I. FORMATION OF A NICKEL ALLOY POWDER COATING ON THIN-WALLED TUBES BY HIGH-SPEED LASER CLADDING. Nuclear Physics and Engineering. 2025;16(4):579-588. (In Russ.) https://doi.org/10.56304/S2079562924060125. EDN: YVHSYB

Views: 19

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)