INVESTIGATION OF SPIN-FLIPPING WHEN APPROACHING THE RESONANT ENERGY IN AN IMPERFECT NICA-BYPASS LATTICE
https://doi.org/10.56304/S2079562925010014
EDN: EHMDLV
Abstract
The present investigation studies the process of change of the beam polarization axis. It is carried out in view of developing a measurement technique to discover the electric dipole moment of the deuteron using an existing particle accelerator, in particular the NICA collider facility (JINR, Dubna), when the latter operates in a storage ring regime. The investigation is part of the effort to devise a procedure to calibrate the so-called effective Lorentz-factor of the beam and is connected with other tasks concerning the re-orientation of the beam’s polatization axis. The process is studies with respect to two questions: (1) to determine the speed of the re-orientation required to fulfill the experimental conditions, (2) the effects it might have on the beam’s spin-coherence. The investigation results provide preliminary answers to these questions.
About the Authors
A. E. AksentevRussian Federation
A. A. Melnikov
Russian Federation
Y. V. Senichev
Russian Federation
S. D. Kolokolchikov
Russian Federation
References
1. Farley F.J.M. et al. // Phys. Rev. Lett. 2004. V. 93 (5). P. 052001. https://doi.org/10.1103/PhysRevLett.93.052001
2. Anastassopoulos D. et al. (srEDM Collab.) “AGS Proposal: Search for a Permanent Electric Dipole Moment of the Deuteron Nucleus at the cm Level,” Proposal as Submitted to the BNL PAC. 2008. https://www.bnl.gov/edm/files/pdf/deuteron_proposal_080423_final.pdf.
3. Abusaif F. et al. (CPEDM Collab.) Storage Ring to Search for Electric Dipole Moments of Charged Particles: Feasibility Study. CERN Yellow Reports: Monographs. CERN-2021-003. 2021. Geneva: CERN. https://doi.org/10.23731/CYRM-2021-003
4. Senichev Y., Aksentyev A., Melnikov A. // Proc. RuPAC’21. Alushta, Russia. 2021. Geneva: JACoW Publ. P. P. 44–47. https://doi.org/10.18429/JACoW-RuPAC2021-TUB03
5. Aksentev A.E., Senichev Y.V. // J. Phys.: Conf. Ser., 2020. V. 1435 (1). P. 012026. https://doi.org/10.1088/1742-6596/1435/1/012026
6. Aksentyev A.E., Senichev Y.V. // Proc. IPAC’19. Melbourne, Australia. 2019. Geneva: JACoW Publ. P. 864–866. https://doi.org/10.18429/JACoW-IPAC2019-MOPTS012
7. Guidoboni G. // Proc. IPAC’15. Richmond, VA, USA. 2015. Geneva: JACoW Publ. P. 4066–4069. https://doi.org/10.18429/JACoW-IPAC2015-THPF146
8. Guidoboni G. et al. // Phys. Rev. Lett. 2016. V. 117 (5). P. 054801. https://doi.org/10.1103/PhysRevLett.117.054801
9. Guidoboni G. et al. // Phys. Rev. Accel. Beams. 2018. V. 21. P. 024201. https://doi.org/10.1103/PhysRevAccelBeams.21.024201
10. Колокольчиков С.Д., Аксентьев А.Е., Мельников А.А., Сеничев Ю.В., Ладыгин В.П., Сыресин Е.М. // Ядерн. физ. инжинир. 2024. Т. 15 (5). С. 464. https://doi.org/10.56304/S2079562924050257 [Kolokolchikov S., Aksentyev A., Melnikov A., Senichev Yu., Ladygin V., Syresin E. // Phys. At. Nucl. 2023. V. 86 (11). P. 2423–2428. https://doi.org/10.1134/S1063778823110248].
11. Аксентьев А.Е., Мельников А.А., Сеничев Ю.В. // Ядерн. физ. инжинир. 2023. Т. 14 (5). С. 465. https://doi.org/10.56304/S2079562922050025 [Aksentev A.E., Melnikov A.A., Senichev Yu.V. // Phys. At. Nucl. 2022. V. 85 (10). P. 1675–1678. https://doi.org/10.1134/S1063778822100027].
12. Berz M., Makino K., Shamseddine K., Hoffstätter G.H., Wan W. “COSY INFINITY and Its Applications in Nonlinear Dynamics.” Computational Differentiation: Techniques, Applications, and Tools. Berz M., Bischof C., Corliss G., Griewank A. (Eds.). 1996. SIAM. P. 363.
Review
For citations:
Aksentev A.E., Melnikov A.A., Senichev Y.V., Kolokolchikov S.D. INVESTIGATION OF SPIN-FLIPPING WHEN APPROACHING THE RESONANT ENERGY IN AN IMPERFECT NICA-BYPASS LATTICE. Nuclear Physics and Engineering. 2025;16(4):505-509. (In Russ.) https://doi.org/10.56304/S2079562925010014. EDN: EHMDLV
JATS XML