SIMULATION OF MAGNETIC AND MECHANICAL CHARACTERISTICS OF THE SUPERCONDUCTING SYSTEM OF A TOROIDAL MAGNETIC FIELD OF A SPHERICAL TOKAMAK
https://doi.org/10.56304/S2079562925020046
EDN: AWTMJD
Abstract
A numerical model for calculating magnetic and mechanical stresses of the superconducting toroidal magnetic field superconducting system of a spherical tokamak is developed. Three configurations are considered: the Princeton-D solenoid and two different helical continuous solenoid configurations. The magnetic field distributions of the solenoids and the mechanical stress distributions to which they are subjected are calculated. It is demonstrated that the Princeton-D solenoid is the least favorable: the modulus of induction of the magnetic field on its windings is an order of magnitude greater than that of the continuous solenoids, resulting in a significantly lower—by 34%—maximum possible current throughput. The mechanical stresses in the first case are also noticeably higher. It is also shown that the two variants of the helical configuration differ insignificantly from each other.
About the Authors
I. V. MartirosianRussian Federation
D. A. Aleksandrov
Russian Federation
M. A. Osipov
Russian Federation
E. A. Vinitskiy
Russian Federation
S. A. Krat
Russian Federation
References
1. Zheng J., Qin J., Lu K., et al. // Innovation. 2022. V. 3 (4). P. 100269.
2. Bell M.G. // The Tokamak Fusion Test Reactor. Magnetic Fusion Energy: From Experiments to Power Plants. Neilson G.H. (Ed.). 2016. New York: Woodhead. P. 119–166. https://doi.org/10.1016/b978-0-08-100315-2.00006-4
3. Reimerdes H., Agostini M., Alessi E., et al. // Nucl. Fusion. 2022. V. 62 (4). P. 042018.
4. Gao X., Zhang T., Wu M., et al. // Plasma Sci. Technol. 2021. V. 23 (9). P. 092001.
5. Khvostenko P.P., Anashkin I.O., Bondarchuk E.N., et al. // Fusion Eng. Des. 2021. V. 164. P. 112211.
6. Marinoni A., Sauter O., Coda S. // Rev. Mod. Plasma Phys. 2021. V. 5 (1). P. 6.
7. Gatto R., Bombarda F. // Fusion Eng. Des. 2019. V. 147. P. 111232.
8. Gatto R., Bombarda F., Gabriellini S., et al. // Nucl. Fusion. 2023. V. 63 (4). P. 046008.
9. Clark A.W., Doumet M., Hammond K.C., et al. // Fusion Eng. Des. 2014. V. 89 (11). P. 2732–2737.
10. Sykes A., Gryaznevich M.P., Kingham D., et al. // IEEE Trans. Plasma Sci. 2014. V. 42 (3). P. 482–488.
11. Zani L., Bayer C.M., Biancolini M.E., et al. // IEEE Trans. Appl. Supercond. 2016. V. 26 (4). P. 4204505.
12. Курнаев В.А., Воробьев Г.М., Николаева В.Е. и др. // Ядерн. физ. инжинир. 2019. Т. 10 (1). С. 24. https://doi.org/10.1134/S2079562919010135
13. [Kurnaev V.A., Vorobyov G.M., Nikolaeva V.E., et al. // Phys. At. Nucl. 2019. V. 82 (10). P. 1329–1331. https://doi.org/10.1134/s1063778819100144].
14. Krat S., Prishvitsyn A., Alieva A., et al. // Fusion Sci. Technol. 2023. V. 79 (4). P. 446–464.
15. Крат С.А., Пришвицын А.С., Алиева А.И. и др. // Ядерн. физ. инжинир. 2022. Т. 13 (1). С. 43. https://doi.org/10.56304/S2079562922010201 [Krat S.A., Pryshvitsyn A.S., Alieva A.I., et al. // Phys. At. Nucl. 2021. V. 84 (12). P. 1995–2003. https://doi.org/10.1134/s1063778820100257].
16. Vorobyov G.M., Krat S.A., Mironov V.D., et al. // Phys. At. Nucl. 2020. V. 83 (12). P. 1675–1681.
17. Gralnick S.L., Tenney F.H. // J. Appl. Phys. 1976. V. 47 (6). P. 2710–2715.
18. Campbell A.M. // Supercon. Sci. Technol. 2007. V. 20 (3). P. 292.
19. Molodyk A., Samoilenkov S., Markelov A., et al. // Sci. Rep. 2021. V. 11 (1). P. 2084.
Review
For citations:
Martirosian I.V., Aleksandrov D.A., Osipov M.A., Vinitskiy E.A., Krat S.A. SIMULATION OF MAGNETIC AND MECHANICAL CHARACTERISTICS OF THE SUPERCONDUCTING SYSTEM OF A TOROIDAL MAGNETIC FIELD OF A SPHERICAL TOKAMAK. Nuclear Physics and Engineering. 2025;16(4):496-504. (In Russ.) https://doi.org/10.56304/S2079562925020046. EDN: AWTMJD
JATS XML