Preview

Nuclear Physics and Engineering

Advanced search

SIMULATION OF MAGNETIC AND MECHANICAL CHARACTERISTICS OF THE SUPERCONDUCTING SYSTEM OF A TOROIDAL MAGNETIC FIELD OF A SPHERICAL TOKAMAK

https://doi.org/10.56304/S2079562925020046

EDN: AWTMJD

Abstract

A numerical model for calculating magnetic and mechanical stresses of the superconducting toroidal magnetic field superconducting system of a spherical tokamak is developed. Three configurations are considered: the Princeton-D solenoid and two different helical continuous solenoid configurations. The magnetic field distributions of the solenoids and the mechanical stress distributions to which they are subjected are calculated. It is demonstrated that the Princeton-D solenoid is the least favorable: the modulus of induction of the magnetic field on its windings is an order of magnitude greater than that of the continuous solenoids, resulting in a significantly lower—by 34%—maximum possible current throughput. The mechanical stresses in the first case are also noticeably higher. It is also shown that the two variants of the helical configuration differ insignificantly from each other.

About the Authors

I. V. Martirosian
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


D. A. Aleksandrov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


M. A. Osipov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


E. A. Vinitskiy
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


S. A. Krat
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Zheng J., Qin J., Lu K., et al. // Innovation. 2022. V. 3 (4). P. 100269.

2. Bell M.G. // The Tokamak Fusion Test Reactor. Magnetic Fusion Energy: From Experiments to Power Plants. Neilson G.H. (Ed.). 2016. New York: Woodhead. P. 119–166. https://doi.org/10.1016/b978-0-08-100315-2.00006-4

3. Reimerdes H., Agostini M., Alessi E., et al. // Nucl. Fusion. 2022. V. 62 (4). P. 042018.

4. Gao X., Zhang T., Wu M., et al. // Plasma Sci. Technol. 2021. V. 23 (9). P. 092001.

5. Khvostenko P.P., Anashkin I.O., Bondarchuk E.N., et al. // Fusion Eng. Des. 2021. V. 164. P. 112211.

6. Marinoni A., Sauter O., Coda S. // Rev. Mod. Plasma Phys. 2021. V. 5 (1). P. 6.

7. Gatto R., Bombarda F. // Fusion Eng. Des. 2019. V. 147. P. 111232.

8. Gatto R., Bombarda F., Gabriellini S., et al. // Nucl. Fusion. 2023. V. 63 (4). P. 046008.

9. Clark A.W., Doumet M., Hammond K.C., et al. // Fusion Eng. Des. 2014. V. 89 (11). P. 2732–2737.

10. Sykes A., Gryaznevich M.P., Kingham D., et al. // IEEE Trans. Plasma Sci. 2014. V. 42 (3). P. 482–488.

11. Zani L., Bayer C.M., Biancolini M.E., et al. // IEEE Trans. Appl. Supercond. 2016. V. 26 (4). P. 4204505.

12. Курнаев В.А., Воробьев Г.М., Николаева В.Е. и др. // Ядерн. физ. инжинир. 2019. Т. 10 (1). С. 24. https://doi.org/10.1134/S2079562919010135

13. [Kurnaev V.A., Vorobyov G.M., Nikolaeva V.E., et al. // Phys. At. Nucl. 2019. V. 82 (10). P. 1329–1331. https://doi.org/10.1134/s1063778819100144].

14. Krat S., Prishvitsyn A., Alieva A., et al. // Fusion Sci. Technol. 2023. V. 79 (4). P. 446–464.

15. Крат С.А., Пришвицын А.С., Алиева А.И. и др. // Ядерн. физ. инжинир. 2022. Т. 13 (1). С. 43. https://doi.org/10.56304/S2079562922010201 [Krat S.A., Pryshvitsyn A.S., Alieva A.I., et al. // Phys. At. Nucl. 2021. V. 84 (12). P. 1995–2003. https://doi.org/10.1134/s1063778820100257].

16. Vorobyov G.M., Krat S.A., Mironov V.D., et al. // Phys. At. Nucl. 2020. V. 83 (12). P. 1675–1681.

17. Gralnick S.L., Tenney F.H. // J. Appl. Phys. 1976. V. 47 (6). P. 2710–2715.

18. Campbell A.M. // Supercon. Sci. Technol. 2007. V. 20 (3). P. 292.

19. Molodyk A., Samoilenkov S., Markelov A., et al. // Sci. Rep. 2021. V. 11 (1). P. 2084.


Review

For citations:


Martirosian I.V., Aleksandrov D.A., Osipov M.A., Vinitskiy E.A., Krat S.A. SIMULATION OF MAGNETIC AND MECHANICAL CHARACTERISTICS OF THE SUPERCONDUCTING SYSTEM OF A TOROIDAL MAGNETIC FIELD OF A SPHERICAL TOKAMAK. Nuclear Physics and Engineering. 2025;16(4):496-504. (In Russ.) https://doi.org/10.56304/S2079562925020046. EDN: AWTMJD

Views: 18

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)