Preview

Nuclear Physics and Engineering

Advanced search

Spectra of Secondary Particles in High-Energy Proton–Proton Collisions in the Thermodynamic Model and the Possibility of Detection of Particles of Dark Matter

https://doi.org/10.1134/S2079562919050075

Abstract

In a simple thermodynamic model, the transverse momentum distributions are found for -hyperons produced in pp collisions at ultrarelativistic energies. Studying the behavior of the average transverse momentum depending on the mass of the emitted particle shows that it is possible to search for large mass quark nuggets as possible candidates for the role of dark matter particles. An interpretation of the spectra of soft photons with respect to the transverse momentum in pp collisions is also given taking into account the boson X17, a new particle, a possible candidate for the role of dark matter particles.

About the Author

A. T. D’yachenko
Emperor Alexander I Petersburg State Transport University; Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”
Russian Federation

St. Petersburg, 190031

Gatchina, Leningrad obl., 188300 R



References

1. Fermi E. // Prog. Theor. Phys. 1950. V. 5. P. 570.

2. Pomeranchuk Ya.I. // Dokl. Akad. Nauk. 1951. V. 78. P. 889 (in Russian).

3. Landau L.D. // Izv. Akad. Nauk SSSR. Ser. Fiz. 1953. V. 17. P. 51 (in Russian).

4. Emelyanov V.M., Timoshenko S.L., Strikhanov M.N. // Vvedeniye v relyativistskuyu yadernuyu fiziku [Introduction to Relativistic Nuclear Physics]. 2004. Mos-cow: Fizmatlit (in Russian).

5. Goldansky V.I., Nikitin Yu.P., Rosenthal I.L. // Kinematicheskiye metody v fizike vysokikh energiy [Kinematic Methods in High Energy Physics]. 1987. Mos-cow: Nauka (in Russian).

6. Piskounova O. // arXiv: 1908.10759v5 [hep-ph]. 2020.

7. Pace VanDevender J. et al. // Sci. Rep. 2020. V. 10. P. 17903; arXiv: 2004.12272v3 [hep-ph]. 2020.

8. Wong C.-Y. // arXiv: 2001.04864v5 [nucl-th]. 2020.

9. Belogianni A. et al. (WA91 Collab.) // Phys. Lett. B. 2002. V. 548. P. 129 (2002).

10. D’yachenko A.T. // Phys. At. Nucl. 1994. V. 57. P. 1930.

11. D’yachenko A.T., Gridnev K.A., Greiner W. // J. Phys. G. 2013. V. 40. P. 085101.

12. D’yachenko A.T., Mitropolsky I.A. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84. P. 301

13. D’yachenko A.T., Mitropolsky I.A. // EPJ Web Conf. 2019. V. 204. P. 03018.

14. D’yachenko A.T., Mitropolsky I.A. // Phys. At. Nucl. 2019. V. 82. P. 1641.

15. D’yachenko A.T., Mitropolsky I.A. // Phys. At. Nucl. 2020. V. 83. P. 553.

16. Drijard D. et al. (ISR Collaboration) // Z. Phys. C. 1982. V. 12. P. 217.

17. Abelev B.I. et al. (STAR Collab.) // Phys. Rev. C. 2007. V. 75. P. 064901.

18. Aamodt K. et al. (ALICE Collab.) // Eur. Phys. J. C. 2011. V. 71. P. 1594.

19. Khachatryan V. et al. (CMS Collab.) // J. High Energy Phys. 2011. V. 05. P. 064; arXiv: 1102.4282v2 [hep-ex]. 2011.

20. Wong C.-Y. // Phys. Rev. C. 2010. V. 81. P. 064903; arX-iv: 1001.1691v3 [hep-ph]. 2010.

21. Krasznahorkay A.J. et al. // Phys. Rev. Lett. 2016. V. 116. P. 042501; arXiv: 1504.01527v1 [nucl-ex]. 2015.

22. Krasznahorkay A.J. et al. // arXiv: 1910.10459v1 [nuclex]. 2019.

23. Abramovsky V.A., Gedalin E.V., Gurvich E.G., Kancheli O.V. // Neuprugiye vzaimodeystviya pri vysokikh energiyakh i khromodinamika [Inelastic Interactions at High Energies and the Chromodynamics]. 1986. Tbilisi: Metsniereba (in Russian).

24. Barbashov B.M., Nesterenko V.V. // Model’ relyativistskoy struny v fizike adronov [Relativistic String Model in Hadron Physics]. 1987. Moscow: Energoatomizdat.


Review

For citations:


D’yachenko A.T. Spectra of Secondary Particles in High-Energy Proton–Proton Collisions in the Thermodynamic Model and the Possibility of Detection of Particles of Dark Matter. Nuclear Physics and Engineering. 2020;11(3):133-138. (In Russ.) https://doi.org/10.1134/S2079562919050075

Views: 45


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)