Preview

Nuclear Physics and Engineering

Advanced search

FRACTURE PARAMETERS AND PLASTICITY OF THE ZR–NB–SN–FE TUBES WITH DIFFERENT HYDRIDES ORIENTATIONS DURING THE MECHANICAL TESTING

https://doi.org/10.56304/S2079562925020083

EDN: IHFJGL

Abstract

The results for mechanical testing and fractography of the ring samples, made of the experimental Zr–Nb–Sn–Fe alloy, are presented. The most reliable macro- and micro- parameters to quantify the fracture surfaces are defined. The correlations of some metrics for hydrides orientation with fracture parameters are investigated. The advantages and disadvantages of individual metrics are revealed. Threshold value for the near-surface radial hydride fracture at room temperature is obtained.

About the Authors

N. S. Saburov
Bochvar Advanced Research Institute of Inorganic Materials
Russian Federation


M. G. Isaenkova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


M. I. Petrov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


P. S. Dzhumaev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Plyasov
Bochvar Advanced Research Institute of Inorganic Materials
Russian Federation


V. A. Markelov
Bochvar Advanced Research Institute of Inorganic Materials
Russian Federation


A. S. Saburov
Bochvar Advanced Research Institute of Inorganic Materials
Russian Federation


References

1. Douglass D.L. The Metallurgy of Zirconium. Atomic Energy Review. 1971. Vienna: IAEA.

2. Займовский А.С., Никулина А.В., Решетников Н.Г. Циркониевые сплавы в атомной энергетике. 1981. Москва: Энергоиздат.

3. Li M., Zhou X., Yang H., et al. // Scrip. Mater. 2018. V. 143. P. 149. https://doi.org/10.1016/j.scriptamat.2017.03.001

4. Pan G., Mueller A.J., Limbäck M., et al. Advanced PWR Cladding Development through Extensive In-Reactor Testing in Zirconium in the Nuclear Industry: 20th Int. Symp. Yagnik S.K., Preuss M. (Eds.) 2023. West Conshohocken: ASTM International. https://doi.org/10.1520/stp164520220053

5. Плясов А.А., Федоров А.В., Сабуров Н.С. и др. // Ядерн. физ. инжинир. 2023. Т. 14 (1). С. 12. https://doi.org/10.56304/S2079562922030368

6. [Plyasov A.A., Fedotov A.V., Saburov N.S., et al. // Phys. At. Nucl. 2022. V. 85 (11). P. 1808. https://doi.org/10.1134/s1063778822110060].

7. Плясов А.А., Новиков Н.Н., Девятко Ю.Н. // Ядерн. физ. инжинир. 2019. Т. 10 (3). С. 243.https://doi.org/10.1134/S2079562919020155

8. [Plyasov A.A., Novikov V.V., Devyatko Yu.N. // Phys. At. Nucl. 2020. V. 83 (10). P. 1407. https://doi.org/10.1134/s1063778820090197].

9. Motta A.T., Capulongo L., Chen L.-Q., et al. // J. Nucl. Mater. 2019. V. 518. P. 440. https://doi.org/10.1016/j.jnucmat.2019.02.042

10. Simon P.-C.A., Frank C., Chen L.Q., et al. // J. Nucl. Mater. 2021. V. 547. P. 152817. https://doi.org/10.1016/j.jnucmat.2021.152817

11. Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. 1999. Cambridge: Cambrige Univ.

12. Domizzi G., Lanzani L., Coronel P. et al. // J. Nucl. Mater. 1997. V. 246. P. 247. https://doi.org/10.1016/s0022-3115(97)00147-5

13. Плясов А.А., Сабуров Н.С., Бекренев С.А. и др. // Ядерн. физ. инжинир. 2024. Т. 15 (5). С. 434. https://doi.org/10.56304/S2079562924050385

14. [Plyasov A.A., Saburov N.S., Bekrenev S.A., et al. // Phys. At. Nucl. 2023. V. 86 (12). P. 2604. https://doi.org/10.1134/s1063778823120062].


Review

For citations:


Saburov N.S., Isaenkova M.G., Petrov M.I., Dzhumaev P.S., Plyasov A.A., Markelov V.A., Saburov A.S. FRACTURE PARAMETERS AND PLASTICITY OF THE ZR–NB–SN–FE TUBES WITH DIFFERENT HYDRIDES ORIENTATIONS DURING THE MECHANICAL TESTING. Nuclear Physics and Engineering. 2025;16(4):442-454. (In Russ.) https://doi.org/10.56304/S2079562925020083. EDN: IHFJGL

Views: 24

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)