EXPERIMENTAL VALIDATION OF LOW-INTENSITY BEAM EXTRACTION MODE FOR PROTON IMAGING AT THE PROMETHEUS SYNCHROTRON
https://doi.org/10.56304/S2079562924050415
EDN: BUCJPK
Abstract
The work is devoted to the dosimetric studies of an ultra-low intensity proton beam for the implementation of proton radiography on the proton therapy complex Prometeus. In contrast to therapy, radiography using proton beams requires low particle fluxes, less than 1 ⋅ 106 protons/(s ⋅ cm2). The controlled uniform extraction of beams of such intensity at therapeutic accelerators is a significant challenge, and it requires the development of innovative approaches. This study is part of a series of studies on the Russian medical proton synchrotron for implementing the extraction of ultra-low intensity beams. The paper presents data on the key parameter of the extracted beam – the absorbed dose – when performing radiographic plans with a scanning beam. It also provides a quantitative analysis based on computer simulation of the spatial characteristics of proton images obtained using the extracted beam parameters.
About the Authors
A. A. PryanichnikovRussian Federation
A. E. Shemyakov
Russian Federation
M. A. Belikhin
Russian Federation
P. B. Zhogolev
Russian Federation
I. N. Zavestovskaya
Russian Federation
A. P. Chernyaev
Russian Federation
References
1. Wilson R.R. // Radiology. 1946. V. 47 (5). P. 487–491. https://doi.org/10.1148/47.5.487
2. Hewitt H.B. // Br. J. Radiol. 1973. V. 46 (550). P. 917–926. https://doi.org/10.1259/0007-1285-46-550-917
3. Bragg W.H., Kleeman R. // Phil. Mag. 1904. V. 8. P. 726–738. https://doi.org/10.1080/14786440409463246
4. Paganetti H. // Phys. Med. Biol. 2012. V. 57. P. 99. https://doi.org/10.1088/0031-9155/57/11/R99
5. Lin R., Shan J., Yuan J. et al. // V. Cancer Med. 2021. V. 2. P. 5. https://doi.org/10.1051/vcm/2021002
6. Chernyaev A.P., Klenov G.I., Bushmanov A.Y. // Med. Radiol. Rad. Safety. 2019. V. 64 (2). P. 11–22. https://doi.org/10.12737/article_5-ca5a0173e4963.18268254
7. Klenov G.I., Khoroshkov V.S. // Phys. Usp. 2016. V. 186. P. 891–911. https://doi.org/10.3367/UFNr.2016.06.037823
8. Particle Therapy Co-Operative Group. Particle Therapy Facilities in Clinical Operation. www.ptcog.ch/index.php/patient-statistics.
9. Durante M., Debus J., Loeffler J.S. // Nat. Rev. Phys. 2021. V. 3. P. 777–790. https://doi.org/10.1038/s42254-021-00368-5
10. Mohan R.A. // Precis. Radiat. Oncol. 2022. V. 6 (2). P. 164–176. https://doi.org/10.1002/pro6.1149
11. Kuznetsov M.B., Kolobov A.V. // Bull. Lebedev Phys. Inst. 2022. V. 49. P. 174–179. https://doi.org/10.3103/S1068335622060045
12. Lomax A.J. // Br. J. Radiol. 2020. V. 93 (1107). P. 0582. https://doi.org/10.1259/bjr.20190582
13. Collins-Fekete C.A., Brousmiche S., Hansen D.C., et al. // Phys. Med. Biol. 2017. V. 62 (17). P. 6836. https://doi.org/10.1088/1361-6560/aa7c42
14. Schneider U., Pedroni E. // Med. Phys. 1995. V. 22 (4). P. 353–363. https://doi.org/10.1118/1.597470
15. Krah N., Patera V., Rit S., et al. // Phys. Med. Biol. 2019. V. 64 (6). P. 065008. https://doi.org/10.1088/1361-6560/ab03db
16. Miller C., Altoos B., DeJongh E.A., et al. // J. Radiat. Oncol. 2019. V. 8 (97). P. 101. https://doi.org/10.1007/s13566-019-00376-0
17. Sarosiek C., DeJongh E.A., Coutrakon G., et al. // Med. Phys. 2021. V. 48. P. 2271–2278. https://doi.org/10.1002/mp.14801
18. Pryanichnikov A.A., Zhogolev P.B., Shemyakov A.E., et al // J. Phys: Conf. Ser. 2021. V. 2058. P. 012041. https://doi.org/10.1088/1742-6596/2058/1/012041
19. Pryanichnikov A.A., Chernyaev A.P., Belikhin M.A., et al. // Moscow Univ. Phys. 2022. V. 77. P. 657–660. https://doi.org/10.3103/S0027134922040129
20. Pryanichnikov A.A., Shemyakov A.E., Sokunov V.V. // Phys. Part. Nucl. Lett. 2018. V. 15 (7). P. 981–985. https://doi.org/10.1134/S1547477118070592
21. Balakin V.E., Bazhan A.I., Pryanichnikov A.A., et al. // Proc. RuPAC'21. 2021. P. 120–123. https://doi.org/10.18429/JACOW-RUPAC2021-FRB05
22. Zavestovskaya I.N., Shemyakov A.E., Pryanichnikov A.A., et al. // Bull. Lebedev Phys. Inst. 2022. V. 49. P. 145–150. https://doi.org/10.3103/S1068335622050050
23. Belikhin M.A., Grigoryeva M.S., Zavestovskaya I.N., et al. // Bull. Lebedev Phys. Inst. 2022. V. 49. P. 132–136. https://doi.org/10.3103/S1068335622050025
24. Faddegon B., Ramos-Méndez J., Schümann J., et al. // Phys. Med. 2020. V. 72. P. 114–121. https://doi.org/10.1016/j.ejmp.2020.03.019
25. DeJongh D.F., DeJongh E.A. // IEEE Trans. Radiat. Plasma Med. Sci. 2022. V. 6 (3). P. 304–312. https://doi.org/10.1109/trpms.2021.3079140
26. DeJongh D.F., DeJongh E.A., Rykalin V., et al. // Med. Phys. 2021. V. 48(12). P. 7998–8009. https://doi.org/10.1002/mp.15334
Review
For citations:
Pryanichnikov A.A., Shemyakov A.E., Belikhin M.A., Zhogolev P.B., Zavestovskaya I.N., Chernyaev A.P. EXPERIMENTAL VALIDATION OF LOW-INTENSITY BEAM EXTRACTION MODE FOR PROTON IMAGING AT THE PROMETHEUS SYNCHROTRON. Nuclear Physics and Engineering. 2025;16(3):388-394. (In Russ.) https://doi.org/10.56304/S2079562924050415. EDN: BUCJPK