CONTROLLED MODIFICATION OF THE OPTICAL PROPERTIES OF CSPBBR3 PEROVSKITE NANOCRYSTALS BY SURFACE CHEMICAL TREATMENT
https://doi.org/10.56304/S207956292405018X
Abstract
CsPbBr3 inorganic perovskite nanocrystals (PNCs) are widely used in various fields of photonics today. However, apart from their unique optical properties, such as a high fluorescence efficiency, intense light absorption, and a tunable bandgap width corresponding to visible light emission, PNCs are characterized by highly dynamic binding of organic surface ligands, which leads to a decrease in the fluorescence quantum yield (QY), colloidal stability, and structural integrity during PNC purification, storage, and use in various devices. This shows that this problem can be solved by postsynthetic surface treatment of CsPbBr3 nanocrystals consisting in partial replacement of desorbed initial oleic acid and oleylamine with shorter-chain alkylammonium ligands, dimethyldodecylammonium bromide (DDAB) and formidinium bromide. Experiments have shown that the treatment of the CsPbBr3 PNC surface with a solution of DDAB and lead bromide increases the QY of PNC fluorescence from 67 to 95%.
About the Authors
D. G. GulevichRussian Federation
I. R. Nabiev
Russian Federation
P. S. Samokhvalov
Russian Federation
References
1. Bodnarchuk M.I., Boehme S., Ten Brinck S., et al. // ACS Energy Lett. 2019. V. 4 (1). P. 63–74.
2. Akkerman Q.A., Gandini M., Di Stasio F., et al. // Nat. Energy. 2016. V. 2 (2). P. 16194.
3. Agrawal K., Hasan S., Blawat J., et al. // Chemosensors. 2022. V. 10 (9). P. 369.
4. Green M.A., Jiang Y., Soufiani A.M., et al. // J. Phys. Chem. Lett. 2015. V. 6 (23). P. 4774–4785.
5. Yettapu G.R., Talukdar D., Sarkar S., et al. // Nano Lett. 2016. V. 16 (8). P. 4838–4848.
6. Yakunin S., Protesescu L., Krieg F., et al. // Nat. Commun. 2015. V. 6 (1). P. 8056.
7. Yang M., Moroz P., Miller E., et al. // ACS Photonics. 2020. V. 7 (1). P. 154–164.
8. He Y., Petryk M., Liu Z., et al. // Nat. Photonics. 2021. V. 15 (1). P. 36–42.
9. Dong Q., Fang Y. // Light Sci. Appl. 2023. V. 12 (1). P. 8.
10. Chen Q., Wu J., Ou X., et al. // Nature. 2018. V. 561 (7721). P. 88–93.
11. Heo J.H., Shin D.H., Park J.K., et al. // Adv. Mater. 2018. V. 30 (40). P. 1801743.
12. Wei H., Huang J. // Nat. Commun. 2019. V. 10 (1). P. 1066.
13. Mo X., Li X., Dai G., et al. // Nanoscale. 2019. V. 11 (44). P. 21386–21393.
14. Tian C., Wang F., Wang Y., et al. // ACS Appl. Mater. Interfaces. 2019. V. 11 (17). P. 15804–15812.
15. Protesescu L., Yakunin S., Bodnarchuk M.I., et al. // Nano Lett. 2015. V. 15 (6). P. 3692–3696.
16. Ng C.K., Yin W., Li H., et al. // Nanoscale. 2020. V. 12 (8). P. 4859–4867.
17. Wang L., Ma D., Guo C., et al. // Appl. Surf. Sci. 2021. V. 543. P. 148782.
18. Van Embden J., Chesman A.S.R., Jasieniak J.J. // Chem. Mater. 2015. V. 27 (7). P. 2246–2285.
19. Kayalvizhi T., Sathya A., Preethi Meher K.R.S. // J. Electron. Mater. 2022. V. 51 (7). P. 3466–3475.
20. De Roo J., Ibáñez M., Geiregat P., et al. // ACS Nano. 2016. V. 10 (2). P. 2071–2081.
21. Hills-Kimball K., Yang H., Cai T., et al. // Adv. Sci. 2021. V. 8 (12). P. 2100214.
22. Wang F., Geng W., Zhou Y., et al. // Adv. Mater. 2016. V. 28 (45). P. 9986–9992.
23. Zheng C., Bi C., Huang F., et al. // ACS Appl. Mater. Interfaces. 2019. V. 11 (28). P. 25410–25416.
24. Yang D., Li X., Zhou W., et al. // Adv. Mater. 2019. P. 1900767.
25. Koscher B.A., Swabeck J.K., Bronstein N.D., et al. // J. Am. Chem. Soc. 2017. V. 139 (19). P. 6566–6569.
26. Zhong Q., Cao M., Hu M., et al. // ACS Nano. 2018. V. 12 (8). P. 8579–8587.
27. Li Z., Hofman E., Li J., et al. // Adv. Funct. Mater. 2018. V. 28 (1). P. 1704288.
28. Ahmed T., Seth S., Samanta A. // Chem. Mater. 2018. V. 30 (11). P. 3633–3637.
29. Wu Y., Wei C., Li X., et al. // ACS Energy Lett. 2018. V. 3 (9). P. 2030–2037.
30. Zhang Z., Liu L., Huang H., et al. // Appl. Surf. Sci. 2020. V. 526. P. 146735.
31. Boussoufi F., Pousthomis M., Kuntzmann A., et al. // ACS Appl. Nano Mater. 2021. V. 4 (7). P. 7502–7512.
32. Cai Y., Zhang P., Bai W., et al. // ACS Sustain. Chem. ng. 2022. V. 10 (22). P. 7385–7393.
33. Kim H., So S., Ribbe A., et al. // Chem. Commun. 2019. V. 55 (12). P. 1833–1836.
34. Wu H., Wang S., Cao F., et al. // Chem. Mater. 2019. V. 31 (6). P. 1936–1940.
35. Dutt V.G.V., Akhil S., Singh R., et al. // J. Phys. Chem. C. 2022. V. 126 (22). P. 9502–9508.
36. Pan J., Shang Y., Yin J., et al. // J. Am. Chem. Soc. 2018. V. 140 (2). P. 562–565.
37. Lian X., Wang X., Ling ., et al. // Adv. Funct. Mater. 2019. V. 29 (5). P. 1807345.
38. Talapin D.V., Lee J.-S., Kovalenko M., et al. // Chem. Rev. 2010. V. 110 (1). P. 389–458.
39. Nakomoto K. // Infrared and Raman Spectra of Inorganic and Coordination Compounds. 1986. New York: Wiley.
40. Stelmakh A., Aebli M., Baumketner A., et al. // Chem. Mater. 2021. V. 33 (15). P. 5962–5973.
Review
For citations:
Gulevich D.G., Nabiev I.R., Samokhvalov P.S. CONTROLLED MODIFICATION OF THE OPTICAL PROPERTIES OF CSPBBR3 PEROVSKITE NANOCRYSTALS BY SURFACE CHEMICAL TREATMENT. Nuclear Physics and Engineering. 2025;16(3):411-416. (In Russ.) https://doi.org/10.56304/S207956292405018X