COMPARATIVE STUDY OF PHOTOTHERMAL CONVERSION EFFICIENCY IN AQUEOUS SUSPENSIONS OF SILICON AND TITANIUM NITRIDE NANOPARTICLES FOR BIOMEDICAL APPLICATIONS
https://doi.org/10.56304/S2079562924050075
EDN: VFSBOI
Abstract
The paper presents the results of experiments on studying laser-stimulated heating in the nearinfrared region of the spectrum of aqueous suspensions of nanoparticles (NPs) based on silicon (Si and Si–Fe NPs) and titanium nitride (TiN NPs) by a continuous laser with a wavelength of 808 nm and a power of 0.36 mW. Temperature profiles were obtained, and the heating rate and photothermal conversion efficiency were determined for each sample at a concentration of 1 mg/mL. The conversion efficiencies for the studied aqueous suspensions of TiN, Si–Fe, and Si NPs were 90, 36 and 10%, respectively. The results obtained show that TiN and Si–Fe NPs can be used as photoagents to control local photohyperthermia in biomedicine.
About the Authors
A. A. BubnovRussian Federation
A. V. Syui
Russian Federation
A. A. Popov
Russian Federation
G. V. Tikhonovskii
Russian Federation
N. S. Pokryshkin
Russian Federation
V. Yu. Timoshenko
Russian Federation
References
1. Gobin A.M., Lee M.H., Halas N.J., et al. // Nano Lett. 2007. V. 7. P. 1929.
2. Fan F., Hou P.Y., Zhang Y., et al. // Front. Oncol. 2022. V. 12. P. 987491.
3. Moustafa R.K., Wu A.Yu., Mostafa A. El-Sayed // J. Phys. Chem. 2019. V. 123 (25). P. 15375.
4. Xue Y., Gao Y., Meng F., et al. // Cancer Biol. Med. 2021. V. 18. P. 336.
5. Han S., Lee D., Kim S., et al. // Biosensors. V. 12. P. 594.
6. West J.L., Halas N.J. // Annu. Rev. Biomed. 2003. V. 5. P. 292.
7. Erogbogbo F., Yong K.T., Roy I., et al. // ACS Nano. 2008. V. 2. P. 873.
8. Gongalsky M., Osminkina L., Pereir A. // Sci. Rep. 2016. V. 6. P. 1.
9. Kabashin A.V., Meunier M. // Sci. Eng. B. 2003. V. 101. P. 60.
10. Feugang J.M., Youngblood R.C., Greene J.M., et al. // J. Nanobiotechnol. 2015. V. 13. P. 38.
11. Maldonado M.E., Das A., Gomes A.S., et al. // Opt. Lett. 2020. V. 45. P. 6695.
12. Avasthi A., Caro C., Pozo-Torres E., et al. // Top. Curr. Chem. 2020. V. 378. P. 40.
13. Vilas-Boas V., Carvalho F., Espiña B. // Molecules. 2020. V. 25 (12). P. 2874.
14. He W., Ai K., Jiang Ch., et al. // Biomaterials. 2017. V. 132. P. 37.
15. Kornilova A.V., Kuralbayeva G.A., Stavitskaya A.V., et al. // Appl. Surf. Sci. 2021. V. 566. P. 150671.
16. Oleshchenko V.A., Bezotosnyi V.V., Timoshenko V.Yu. // Quant. Electron. 2020. V. 50. P. 104.
17. Chen H., Shao L., Ming T., et al. // Small. 2010. V. 6. P. 2272.
18. Xu W., Tamarov K., Fan L., et al. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 23529
19. Paściak A., Marin R., Abiven L., et al. // ACS Appl Mater. Interfaces. 2022. V. 14 (29). P. 33555.
20. Jiang W., Fu Q., Wei H. // J. Mater. Sci. 2019. V. 54. P. 5743.
21. Popov A.A., Tikhonowski G.V., Shakhov P.V., et al. // Nanomaterials. 2022. V. 12. P. 1672.
22. Jiang K., Smith D.A., Pinchuk A. // J. Phys. Chem. 2013. V. 117. P. 27073.
Review
For citations:
Bubnov A.A., Syui A.V., Popov A.A., Tikhonovskii G.V., Pokryshkin N.S., Timoshenko V.Yu. COMPARATIVE STUDY OF PHOTOTHERMAL CONVERSION EFFICIENCY IN AQUEOUS SUSPENSIONS OF SILICON AND TITANIUM NITRIDE NANOPARTICLES FOR BIOMEDICAL APPLICATIONS. Nuclear Physics and Engineering. 2025;16(3):406-410. (In Russ.) https://doi.org/10.56304/S2079562924050075. EDN: VFSBOI