Preview

Nuclear Physics and Engineering

Advanced search

MODELING RADIOFREQUENCY HEATING OF NANOPARTICLES FOR BIOMEDICAL APPLICATIONS

https://doi.org/10.56304/S2079562924050178

EDN: DWNXCB

Abstract

The paper presents the results of simulation of heat release in a biological environment under the influence of electromagnetic radiation of the radio frequency range for two types of solid-state nanoparticles. The advantage of gold nanoparticles over nanoparticles of crystalline silicon in terms of contribution to the overall heating of the aqueous solution of NaCl is shown.

About the Authors

A. A. Grigoriev
Lebedev Physical Institute of Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. N. Zavestovskaya
Lebedev Physical Institute of Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. P. Kanavin
Lebedev Physical Institute of Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Cherukuri P., Glazer E.S., Curley S.A. // Adv. Drug. Deliv. Rev. 2009. V. 62. P. 339–345.

2. Milleron R.S., Bratton S.B. // Cell. Mol. Life Sci. 2007. V. 64. P. 2329–2333.

3. Behrouzkia Z., Joveini Z., Keshavarzi B., Eyvazzadeh N., Aghdam R.Z. // Oman Med. J. 2016. V. 31 (2). P. 89–97.

4. Kandala S.K., Sharma A., Mirpour S., Liapi E., Ivkov R., Attaluri A. // Int. J. of Hypertherm. 2021. V. 38 (1). P. 611–622.

5. Tsiapla A.R., Kalimeri A.A., Maniotis N., Myrovali E., Samaras T., Angelakeris M., Kalogirou O. // Int. J. Hypertherm. 2021. V. 38 (1). P. 511–522.

6. Balakrishnan P.B., Sweeney E.E., Ramanujam A.S., Fernandes R. // Int. J. Hypertherm. 2020. V. 37 (3). P. 34–49.

7. Klein I., Sarkar S., Gutierrez-Aceves J., Levi N. // Int. J. Hypertherm. 2021. V. 38 (1). P. 760–770.

8. Bianchi L., Mooney R., Cornejo Y.R., Schena E., Berlin J.M., Aboody K.S., Saccomandi P. // Int. J. Hypertherm. 2021. V. 38 (1). P. 1099–1110.

9. Kok H.P., Cressman E., Ceelen W., Brace C.L., Ivkov R., Grüll H., Haar G., Wust P., Crezee J. // Int. J. Hypertherm. 2020. V. 37 (1). P. 711–741.

10. Gongalsky M., Gvindzhiliia G., Tamarov K., Shalygina O., Pavlikov A., Solovyev V., Kudryavtsev A., Sivakov V., Osminkina L. // ACS Omega. 2019. V. 4. P. 10662–10669.

11. Deng Q., He M., Fu Ch., Feng K., Ma K., Zhang L. // Int. J. Hypertherm. 2022. V. 39 (1). P. 1052–1063.

12. Didarian R., Vargel I. // IET Nanobiotechnol. 2021. V. 15 (8). P. 639–653.

13. Kabashin A.V., Tamarov K.P., Ryabchikov Yu.V., Osminkina L.A., Zinovyev S.V., Kargina J.V., Gongalsky M.B., Al-Kattan A., Yakunin V.G., Sentis M.L., Ivanov A.V., Nikiforov V.N., Kanavin A.P., Zavestovskaya I.N., Timoshenko V.Yu. // Proc. SPIE. 2016. V. 9737. P. 97370A.

14. Grigoriev A.A., Grigoryeva M.S., Kargina Yu.V., Kharin A.Yu, Zavestovskaya I.N., Kanavin A.P., Timos-henko V.Yu. // Bull. Lebedev Phys. Inst. 2021. V. 48. P. 170–174.

15. Tamarov K.P., Kanavin A.P., Timoshenko V.Yu., Kabashin A.V., Zavestovskaya I.N. // Proc. SPIE. 2016. V. 9737. P. 973706

16. Wang K., Zhao Y., Chen D., et al. // Sci. Data. 2017. V. 4. P. 170015.


Review

For citations:


Grigoriev A.A., Zavestovskaya I.N., Kanavin A.P. MODELING RADIOFREQUENCY HEATING OF NANOPARTICLES FOR BIOMEDICAL APPLICATIONS. Nuclear Physics and Engineering. 2025;16(3):334-337. (In Russ.) https://doi.org/10.56304/S2079562924050178. EDN: DWNXCB

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)