MODELING RADIOFREQUENCY HEATING OF NANOPARTICLES FOR BIOMEDICAL APPLICATIONS
https://doi.org/10.56304/S2079562924050178
EDN: DWNXCB
Abstract
The paper presents the results of simulation of heat release in a biological environment under the influence of electromagnetic radiation of the radio frequency range for two types of solid-state nanoparticles. The advantage of gold nanoparticles over nanoparticles of crystalline silicon in terms of contribution to the overall heating of the aqueous solution of NaCl is shown.
About the Authors
A. A. GrigorievRussian Federation
I. N. Zavestovskaya
Russian Federation
A. P. Kanavin
Russian Federation
References
1. Cherukuri P., Glazer E.S., Curley S.A. // Adv. Drug. Deliv. Rev. 2009. V. 62. P. 339–345.
2. Milleron R.S., Bratton S.B. // Cell. Mol. Life Sci. 2007. V. 64. P. 2329–2333.
3. Behrouzkia Z., Joveini Z., Keshavarzi B., Eyvazzadeh N., Aghdam R.Z. // Oman Med. J. 2016. V. 31 (2). P. 89–97.
4. Kandala S.K., Sharma A., Mirpour S., Liapi E., Ivkov R., Attaluri A. // Int. J. of Hypertherm. 2021. V. 38 (1). P. 611–622.
5. Tsiapla A.R., Kalimeri A.A., Maniotis N., Myrovali E., Samaras T., Angelakeris M., Kalogirou O. // Int. J. Hypertherm. 2021. V. 38 (1). P. 511–522.
6. Balakrishnan P.B., Sweeney E.E., Ramanujam A.S., Fernandes R. // Int. J. Hypertherm. 2020. V. 37 (3). P. 34–49.
7. Klein I., Sarkar S., Gutierrez-Aceves J., Levi N. // Int. J. Hypertherm. 2021. V. 38 (1). P. 760–770.
8. Bianchi L., Mooney R., Cornejo Y.R., Schena E., Berlin J.M., Aboody K.S., Saccomandi P. // Int. J. Hypertherm. 2021. V. 38 (1). P. 1099–1110.
9. Kok H.P., Cressman E., Ceelen W., Brace C.L., Ivkov R., Grüll H., Haar G., Wust P., Crezee J. // Int. J. Hypertherm. 2020. V. 37 (1). P. 711–741.
10. Gongalsky M., Gvindzhiliia G., Tamarov K., Shalygina O., Pavlikov A., Solovyev V., Kudryavtsev A., Sivakov V., Osminkina L. // ACS Omega. 2019. V. 4. P. 10662–10669.
11. Deng Q., He M., Fu Ch., Feng K., Ma K., Zhang L. // Int. J. Hypertherm. 2022. V. 39 (1). P. 1052–1063.
12. Didarian R., Vargel I. // IET Nanobiotechnol. 2021. V. 15 (8). P. 639–653.
13. Kabashin A.V., Tamarov K.P., Ryabchikov Yu.V., Osminkina L.A., Zinovyev S.V., Kargina J.V., Gongalsky M.B., Al-Kattan A., Yakunin V.G., Sentis M.L., Ivanov A.V., Nikiforov V.N., Kanavin A.P., Zavestovskaya I.N., Timoshenko V.Yu. // Proc. SPIE. 2016. V. 9737. P. 97370A.
14. Grigoriev A.A., Grigoryeva M.S., Kargina Yu.V., Kharin A.Yu, Zavestovskaya I.N., Kanavin A.P., Timos-henko V.Yu. // Bull. Lebedev Phys. Inst. 2021. V. 48. P. 170–174.
15. Tamarov K.P., Kanavin A.P., Timoshenko V.Yu., Kabashin A.V., Zavestovskaya I.N. // Proc. SPIE. 2016. V. 9737. P. 973706
16. Wang K., Zhao Y., Chen D., et al. // Sci. Data. 2017. V. 4. P. 170015.
Review
For citations:
Grigoriev A.A., Zavestovskaya I.N., Kanavin A.P. MODELING RADIOFREQUENCY HEATING OF NANOPARTICLES FOR BIOMEDICAL APPLICATIONS. Nuclear Physics and Engineering. 2025;16(3):334-337. (In Russ.) https://doi.org/10.56304/S2079562924050178. EDN: DWNXCB