Preview

Nuclear Physics and Engineering

Advanced search

TUNABLE FABRY–PEROT MICROCAVITY BASED ON BORON NITRIDE AND RHODAMINE 6G

https://doi.org/10.56304/S2079562924050142

EDN: XUUPLC

Abstract

The interaction of light with matter leads to excitation of molecules, which, in turn, can exchange energy with a localized electromagnetic field. This can be used for engineering of the electronic and vibrational energy levels of molecules. This study considers the conditions for the emergence of the strong light–matter coupling regime for organic dye molecules in a tunable Fabry–Perot microcavity formed by a convex mirror and a flat reflecting surface. The sample studied was made of hexagonal boron nitride (hBN), polyvinylpyrrolidone 55K polymer (PVP), and rhodamine 6G fluorophore (R6G). Strong light–matter coupling was achieved for the sample with a low concentration of PVP. Adjustment of the optical path length in the microcavity by varying the thickness of the hBN–R6G–PVP film made it possible to obtain a high density of modes in the cavity (several tens of (λ/n)3) and, hence, to study the weak and strong light–matter coupling regimes. The results offer the possibilities of studying the basic mechanisms of the resonant interaction of light with matter at room temperature, as well as developing new practical applications of the strong coupling effect.

About the Authors

E. A. Granizo
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


P. S. Samokhvalov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. R. Nabiev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Laboratoire de Recherche en Nanosciences (LRN-EA4682), Université de Reims Champagne-Ardenne
Russian Federation


References

1. Dovzhenko D., Martynov I., Samokhvalov P., et al. // Opt. Express. 2020. V. 28. P. 22705–22717.

2. Purcell E.M. Confined Electrons and Photons: New Physics and Applications. 1995. New York: Springer Science. P. 839–839.

3. Sanchez-Mondragon J.J., Narozhny N.B., Eberly J.H. // Phys. Rev. Lett. 1983. V. 51. P. 550.

4. Törmä P., Barnes W.L. // Rep. Prog. Phys. 2014. V. 78. P. 013901.

5. Li T.E., Cui B., Subotnik J.E., et al. // Ann. Rev. Phys. Chem. 2022. V. 73. P. 43–71.

6. Herrera F., Owrutsky J. // J. Chem. Phys. 2020. V. 152. P. 100902.

7. Fregoni J., Granucci G., Persico M., et al. // Chemistry. 2020. V. 6. P. 250.

8. Mandal A., Krauss T.D., Huo P. // J. Phys. Chem. B. 2020. V. 124. P. 6321–6340.

9. Li T.E., Nitzan A., Subotnik J.E. // Angew. Chem. Int. Ed. 2021. V. 60. P. 15533.

10. Gu B., Mukamel S. // Chem. Sci. 2020. V. 11. P. 1290–1298.

11. Tichauer R.H., Morozov D., Sokolovskii I., et al. // J. Phys. Chem. Lett. 2022. V. 13. P. 6259–6267.

12. Fischer E.W., Saalfrank P. // J. Chem. Phys. 2022. V. 157. P. 034305.

13. Dovzhenko D., Mochalov K., Vaskan I., et al. // Opt. Express. 2019. V. 27. P. 4077–4089.

14. Han W., Zhang X., Chen M., et al. // Dyes Pigm. 2023. V. 215. P. 111244.

15. Revabhai P.M., Singhal R.K., Basu H., et al. // J. Nanostruct. Chem. 2023. V. 13. P. 1–41.

16. Li M., Huang G., Chen X., et al. // Nano Today. 2022. V. 44. P. 101486.

17. Yadav A., Dindorkar S.S. // Colloids Surf. A. 2022. V. 640. P. 128509.

18. Schramm S., Weiss D. // Adv. Heterocycl. Chem. 2019.V. 128. P. 103–179.

19. Zhao Q., Zhou W.J., Deng Y.H., et al. // J. Phys. D: Appl. Phys. 2022. V. 55. P. 203002.

20. Al-Ani I.A., As’ham K., Klochan O., et al. // J. Opt. 2022. V. 24. P. 053001.


Review

For citations:


Granizo E.A., Samokhvalov P.S., Nabiev I.R. TUNABLE FABRY–PEROT MICROCAVITY BASED ON BORON NITRIDE AND RHODAMINE 6G. Nuclear Physics and Engineering. 2025;16(3):328-333. (In Russ.) https://doi.org/10.56304/S2079562924050142. EDN: XUUPLC

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)