Preview

Nuclear Physics and Engineering

Advanced search

TEXTURAL STATISTICAL FEATURES OF ULTRASOUND IMAGING OF THYROID NODULES IN THE ASSESSMENT OF MALIGNANCY STATUS

https://doi.org/10.56304/S2079562924050300

EDN: VHNELK

Abstract

The paper presents the results of a study of the possibility of using textural statistical features to classify images of ultrasound diagnostics of thyroid nodules. Ultrasound diagnostics has a significant potential for quantitative diagnostics. New information technologies allow us to identify characteristics that complement the classical methods of image analysis in medicine.

About the Authors

A. V. Manaev
National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Trukhin
National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


S. M. Zakharova
National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


E. A. Troshina
National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


N. G. Mokrysheva
National Medical Research Center of Endocrinology of the Ministry of Health of the Russian Federation
Russian Federation


A. A. Garmash
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Diana S. // Best Pract. Res. Clin. Endocrinol. Metab. 2008. V. 22 (6). P. 901–911.

2. Kim H.G. et al. // Eur. J. Radiol. 2012. V. 81. P. E352E356.

3. Peng S. et al. // The Lancet. Digital Health. 2021. V. 3 (4). P. E250–E259.

4. Cao Y. et al. // Cancers. 2021. V. 13 (10). P. 2436.

5. Cleere E.F. et al. // Diagnostics. 2022. V. 12 (4). P. 794.

6. GLCM Texture: A Tutorial v. 3.0 March 2017. / Hall-Beyer Mryka. 2017. http://hdl.handle.net/1880/51900.

7. Haralick R.M., Shanmugan K., Dinstein I. // IEEE Trans. Syst. Man Cybern. 1973. V. 3 (6). P. 610–621.

8. Gomes Ataide E.J. et al. // Sensors. 2020. V. 20 (21). P. 6110.


Review

For citations:


Manaev A.V., Trukhin A.A., Zakharova S.M., Troshina E.A., Mokrysheva N.G., Garmash A.A. TEXTURAL STATISTICAL FEATURES OF ULTRASOUND IMAGING OF THYROID NODULES IN THE ASSESSMENT OF MALIGNANCY STATUS. Nuclear Physics and Engineering. 2025;16(2):237-244. (In Russ.) https://doi.org/10.56304/S2079562924050300. EDN: VHNELK

Views: 32


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)