Preview

Nuclear Physics and Engineering

Advanced search

RECONSTRUCTION OF COSMIC RAY FLUXES TIME PROFILES FROM GROUND-BASED NEUTRON MONITOR NETWORK DATA

https://doi.org/10.56304/S2079562925020071

EDN: VULDFB

Abstract

Today, most scientific equipment designed to measure cosmic ray particle fluxes is located on the Earth’s surface. Those instruments record the intensities of secondary cosmic rays, which are created after the interaction of cosmic rays with the Earth’s atmosphere. With the advent of spectrometric equipment installed on space satellites, direct measurements of cosmic ray fluxes in a wide energy range have become possible. However, precise information on such measurements is not always available. Scientific equipment in outer space is subject to radiation wear, which manifests in a significant deterioration in the efficiency of particle registration. Neutron monitors have been stably measuring cosmic ray intensities for several decades. They are located on the Earth’s surface therefore they are not subject to radiation wear and. The paper discusses an algorithm for calibrating neutron monitors using satellite experiment data and the prospects for its application in analyzing cosmic ray particle fluxes during periods of minimum and maximum solar activity cycles, as well as during forbush decreases.

About the Authors

I. A. Lagoida
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


I. I. Astapov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


P. S. Kuzmenkova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Strauss R.D., Potgieter M.S. // Adv. Sp. Res. 2014. V. 53 (7). P. 1015–1023. https://doi.org/10.1016/j.asr.2014.01.004

2. Usoskin I.G. et al. // J. Geophys. Res. Sp. Phys. 2005. V. 110. P. A12. https://doi.org/10.1029/2005JA011250

3. Burger R.A., Potgieter M.S., Heber B. // J. Geophys. Res. 2000. V. 105 (27) P. 447. https://doi.org/10.1029/2000JA000153

4. Webber W.R., Higbie P.R. // J. Geophys. Res. 2003. V. 108. P. A9. https://doi.org/10.1029/2003JA009863

5. Vos E.E., Potgieter. M.S. // Astrophys. J. 2015. V. 815 (2). P. 119. https://doi.org/10.1088/0004-637X/815/2/119

6. Bischoff D., Potgieter M.S., Aslam O.P.M. // Astrophys. J. 2019. V. 878 (1). P. 59. https://doi.org/10.48550/arXiv.1902.10438

7. Vaisanen P. Usoskin I., Mursula K. // J. Geophys. Res. Sp. Phys. 2021. V. 125 (5). P. e2020JA028941. https://doi.org/10.1029/2020JA028941

8. Hatton C.J., Carmichael. H. // Can. J. Phys. 1964. V. 42 (12). P. 2443–2472. https://doi.org/10.1139/p64-222

9. Mishev A.L. et al. // J. Geophys. Res. 2020 V. 125 (2). P. e2019JA027433 https://doi.org/10.1029/2019JA027433

10. Vaisanen P. et al. // J. Geophys. Res. 2023. V. 128 (4). P. e2023JA031352. https://doi.org/10.1029/2023JA031352

11. Corti C. et al. // Astrophys. J. 2016. V. 829 (8). P. 9. https://doi.org/10.3847/0004-637X/829/1/8

12. Giesler J., Heber B., Herbst K. // J. Geophys. Res. Sp. Phys. 2017. V. 122 (11). P. 10694–10979. https://doi.org/10.1002/2017JA024763

13. Kuhlen M., Mertsch P. // Phys. Rev. Let. 2019. V. 123 (25). P. 251104. https://doi.org/10.1103/PhysRevLett.123.251104

14. Koldobskiy S.A., Usoskin I.G. // PoS. 2023.V. 444. P. 1325. https://doi.org/10.22323/1.444.1325

15. Aguilar M. et al. // Phys. Rev. Let. 2021. V. 127 (27). P. 271102. https://doi.org/10.1103/PhysRevLett.127.271102

16. Cane H.V. // Sp. Sc. Rev. 2000. V. 93. P. 55–77. https://doi.org/10.1023/A:1026532125747


Review

For citations:


Lagoida I.A., Astapov I.I., Kuzmenkova P.S. RECONSTRUCTION OF COSMIC RAY FLUXES TIME PROFILES FROM GROUND-BASED NEUTRON MONITOR NETWORK DATA. Nuclear Physics and Engineering. 2025;16(2):227-232. (In Russ.) https://doi.org/10.56304/S2079562925020071. EDN: VULDFB

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)