Preview

Nuclear Physics and Engineering

Advanced search

EVOLUTION OF DISPERSED SYSTEMS OF METAL OXIDES NANOPARTICLES OBTAINED IN A PLASMA DISCHARGE IN LIQUIDS UNDER THE EFFECT OF ULTRASOUND

https://doi.org/10.56304/S2079562924060095

EDN: AIODIQ

Abstract

In this work, nanoparticles of aluminum, copper and titanium oxides have been obtained in a plasma discharge in the liquid phase (ethylene glycol, water) under the influence of intense ultrasound. Particular procedures have been developed for creating sedimentation-stable aqueous dispersed systems of nanoparticles of copper(II), aluminum, and titanium(IV) oxides. Nanoparticles are stabilized by the nonionic surfactant Tween 85 at its optimal concentration of 3 mmol/L and with a metal oxide content up to 0.2 g/L. It has been shown that stable dispersed systems of particles are obtained by adding a surfactant to the initial system, followed by diluting it with distilled water and ultrasonic dispersion. Scanning electron microscopy has shown that nanoparticles of copper, aluminum and titanium oxides have a spherical shape. Highly stable dispersed systems with a narrow particle size distribution have been obtained: 20 nm for Al2O3, 40 nm for CuO, and 30 nm for TiO2 after membrane filtration of the initial dispersed systems. Electrokinetic studies have shown that the surface of nanoparticles of copper, aluminum and titanium oxides becomes negatively charged when stabilized by Tween-85. The average ξ-potential value is –(20 ± 5) mV. The study of the kinetics of growth and stability of nanoparticles has showed that titanium oxide nanoparticles have higher aggregation stability compared to copper and aluminum oxides under the same conditions. The stability time of the obtained samples is approximately 1.5 months.

About the Authors

O. A. Butusova
Moscow Aviation Institute (National Research University)
Russian Federation


S. A. Sitnikov
Moscow Aviation Institute (National Research University)
Russian Federation


N. A. Bulychev
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Xia Y.N., Yang P.D., Sun Y.G., Wu Y.Y., Mayers B., Gates B., Yin Y.D., Kim F., Yan H.Q. // Adv. Mater. 2003. V. 15 (5). P. 353–389.

2. Rehman S., Asiri S.M., Khan F.A., Jermy B.R., Khan H., Akhtar S., Qurashi A. // ChemistrySelect. 2019. V. 4 (14). P. 4013–4017.

3. Cao N., Xie X., Zhang Y., Zhao Y., Cao L., Sun L. // J. Ind. Eng. Chem. 2016. V. 34. P. 9–13.

4. Devi R.K., Muthusankar G., Gopu G., Berchmans L.J. // Colloids Surf. A.. 2020. V. 598. P. 124825.

5. Bulychev N.A., Kazaryan M.A. et al // Bull. Lebedev Phys. Inst. 2012. V. 39. P. 214–220.

6. Burkhanov I.S., Chaikov L.L., Bulychev N.A., Kazaryan M.A., Krasovskii V.I. // Bull. Lebedev Phys. Inst. 2014. V. 41. P. 297–304.

7. Klassen N., Krivko O., Kedrov V., Shmurak S., Kiselev A., Shmyt’ko I., Kudrenko E., Shekhtman A., Bazhenov A., Fursova T., Abramov V., Bulychev N., Kisterev E. // IEEE Trans. Nucl. Sci. 2010. V. 57 (3). P. 1377–1381.

8. Bulychev N., Dervaux B., Dirnberger K., Zubov V., Du Prez F.E., Eisenbach C.D. // Macromol. Chem. Phys. 2010. V. 9 (211). P. 971–977.

9. Ioni Y., Sapkov I., Kirsanova M., Dimiev A.M. // Carbon. 2023. V. 212 P. 118122.

10. Ioni Y., Khamidullin T., Sapkov I., Brysko V., Dimiev A.M. // Carbon Lett. 2024.

11. Кузенов В.В., Рыжков С.В. // Теплофиз. выс. темп. 2021. Т. 59 (4). С. 492–501.

12. Kuzenov V.V., Ryzhkov S.V. // Probl. At. Sci. Tech. 2013. V. 86 (4). P. 103–107.

13. Ryzhkov S.V. // Probl. At. Sci. Tech. 2010. V. 4 (7). P. 105–110.

14. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2023. V. 13. P. 5538.

15. Kuzenov V.V., Ryzhkov S.V. // Comput. Therm. Sci. 2021. V. 13. P. 45–56.

16. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2022. V. 12. P. 3610.

17. Kuzenov V.V., Ryzhkov S.V. // Probl. At. Sci. Tech. 2013. V. 1 (83). P. 12–14.

18. Ryzhkov S.V. // Appl. Sci. 2023. V. 13 (21). P. 6658.

19. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Mathematics. 2022. V. 10. P. 2130.


Review

For citations:


Butusova O.A., Sitnikov S.A., Bulychev N.A. EVOLUTION OF DISPERSED SYSTEMS OF METAL OXIDES NANOPARTICLES OBTAINED IN A PLASMA DISCHARGE IN LIQUIDS UNDER THE EFFECT OF ULTRASOUND. Nuclear Physics and Engineering. 2025;16(2):207-212. (In Russ.) https://doi.org/10.56304/S2079562924060095. EDN: AIODIQ

Views: 29


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)