Preview

Nuclear Physics and Engineering

Advanced search

Ion Radiation Impact on Microstructure and Mechanical Properties of W–6Re Alloy at 500°С

https://doi.org/10.1134/S2079562919050166

Abstract

The paper reports the results of the ion irradiation impact on a monocrystalline tungsten alloy, W‒6Re. This material is considered for use in the design of fusion reactors. Irradiation was carried out in order to simulate radiation effects and analyze the radiation resistance of the fusion reactor material. Specimens were irradiated with 5.6 MeV Fe ions at 500°C up to a maximum damage dose of 8 dpa. Microstructure of W–6Re was analyzed before and after irradiation. It is shown with transmission electron microscopy that the formation of structural defects, dislocation loops with sizes of 2–15 nm and a number density of 1.2 × 1023 m−3 occurs as a result of irradiation. Detailed analysis by atomic probe tomography microscope revealed the decomposition of the solid solution with the formation of nanoscale segregations enriched in rhenium by 18 at %. The radiation-induced hardening of the irradiated layer is determined by nanoindentation. The strength increment was 1.6 GPa.

About the Authors

A. A. Nikitin
Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 117218

Moscow, 115409 



N. P. Bobyr
National Research Center “Kurchatov Institute”
Russian Federation

Moscow, 123182



S. V. Rogozhkin
Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 117218

Moscow, 115409 



P. A. Fedin
Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”
Russian Federation

Moscow, 117218

Moscow, 115409 



I. A. Karateev
National Research Center “Kurchatov Institute”
Russian Federation

Moscow, 123182



E. V. Gladkih
Moscow Institute of Physics and Technology (National Research University)
Russian Federation

 Dolgoprudnyi, Moscow oblast, 141701 R



P. S. Zakharova
Alikhanov Institute for Theoretical and Experimental Physics, National Research Center “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Moscow, 117218

Moscow, 115409



References

1. Rieth M. et al. // J. Nucl. Mater. 2013. V. 432. P. 482– 500.

2. Qi Y. et al. // Mater. Lett. 2019. V. 242. P. 115–118.

3. Sukuba I. et al. // Eur. Phys. J. D. 2016. V. 70. P. 11.

4. Merola M. et al. // Fusion Eng. Des. 2015. V. 96–97. P. 34–41.

5. Pitts R.A. et al. // J. Nucl. Mater. 2013. V. 438. P. S48– S56.

6. Pintsuk G. Tungsten as a Plasma-Facing Material. Comprehensive Nuclear Materials. 2012. Amsterdam: Elsevier. P. 551–581.

7. Gilbert M.R., Sublet J.-Ch. // Nucl. Fusion. 2011. V. 51. P. 043005.

8. Watanabe Sh., Nogami Sh., Reiser J., Rieth M., Sickinger S., Baumgärtner S., Miyazawa T., Hasegawa A. // Fusion Eng. Des. 2019. V. 148. P. 111323.

9. Xu A. et al. // Acta Mater. 2015. V. 87. P. 121–127.

10. Xu A. et al. // Acta Mater. 2017. V. 124. P. 71–78.

11. Hasenhuetl E. et al. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2017. V. 397. P. 11–14.

12. Armstrong D.E.J. et al. // J. Nucl. Mater. 2013. V. 432. P. 428–436.

13. Hasegawa A. et al. // J. Nucl. Mater. 2016. V. 471. P. 175–183.

14. Kulevoy T., Chalyhk B., Fedin P., Kozlov A. et al. // Rev. Sci. Instrum. 2016. V. 87. P. 02C102.

15. Spitsyn A., Bobyr N., Kulevoy T., Fedin P., Semennikov A., Stolbunov V. // Fusion Eng. Des. 2019. V. 146. P. 1313– 1316.

16. Рогожкин С.В., Никитин А.А., Хомич А.А. и др. // Ядерная физика и инжиниринг 2018. Т. 9. No. 3. С. 245–258.

17. Kulevoy T., Aleev A., Ivanov S., Kozlov A., Kropachev G., Kuibeda R., Nikitin A., Rogozhkin S., Semennikov A., Sharkov B., Zaluzhny A. // Proc. Intl. Topical Meeting on Nuclear Research Applications and Utilization of Accelerators. 2009. V. AP/P5 07. P. 1.

18. Kashinsky D., Kolomiets A., Kulevoy T., Kuybida R., Kuzmichov V., Minaev S., Pershin V., Sharkov B., Vengrov R., Yaramishev S. // Proc. EPAC. 2000. P. 854.

19. Stoller R.E., Toloczko M.B., Was G.S., Certain A.G., Dwaraknath S.D., Garner F.A. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2013. V. 310. P. 75–80.

20. Рогожкин С.В., Алеев А.А., Лукьянчук А.А., Шутов А.С., Разницын О.А., Кириллов С.Е. // Приборы и техника эксперимента. 2017. № 3. С. 129–134.

21. Cheng Y.-T., Cheng C.-M. // Mater. Sci. Eng. R. 2004. V. 44. P. 91–149. https://doi.org/10.1016/j.mser.2004.05.001

22. Nix W.D., Gao H. // J. Mech. Phys. Solids. 1998. V. 46. P. 411–425.


Review

For citations:


Nikitin A.A., Bobyr N.P., Rogozhkin S.V., Fedin P.A., Karateev I.A., Gladkih E.V., Zakharova P.S. Ion Radiation Impact on Microstructure and Mechanical Properties of W–6Re Alloy at 500°С. Nuclear Physics and Engineering. 2020;11(3):125-132. (In Russ.) https://doi.org/10.1134/S2079562919050166

Views: 48


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)