Preview

Nuclear Physics and Engineering

Advanced search

COMPARATIVE STUDY OF THE STRUCTURE AND MECHANICAL PROPERTIES OF PM HIP COMPACTS MANUFACTURED USING RAPIDLY QUENCHED PREP POWDER AND A PRODUCT MADE USING TRADITIONAL TECHNOLOGY FROM A HEAT-RESISTANT TITANIUM-BASED ALLOY

https://doi.org/10.56304/S2079562924060393

EDN: YUHZIN

Abstract

A comparative study of the structure of PM HIP compacts made using spherical particles (granules) of rapidly quenched PREP powder of a heat-resistant α + β Ti based alloy and a similar product manufactured using traditional technology has been carried out. Multi-scale study of the microstructure of PM HIP compacts and analogous product manufactured using traditional technologies has been performed by metallography, SEM, TEM, EDX and OIM. The influence of vacuum heat treatment and temperature consolidation of HIP in the regions of (α + β) and β phases on the regularities of the structure formation of PM HIP compacts of the heat-resistant titanium-based alloy has been revealed. Features of microstructures such as lamellar, bimodal microstructure, and grains have been detected and studied in detail in PM HIP compacts and in product obtained by traditional technology. The extreme behavior of the distribution coefficient kd of alloying elements between the α and β phases in the product obtained using traditional technology, in comparison with PM HIP compacts, has been discovered and studied in detail. Analysis of the obtained result, in comparison with the results of a comparative study of the structure and properties of PM HIP compacts obtained using rapidly quenched PREP powders, and products obtained using traditional technology from corrosion-resistant steels and nickel superalloys, has allowed the following important conclusion. The cooling rate during solidification is the dominant factor in the formation of the final structural-phase state (composition of α and β phases in the Ti alloy) and, therefore, is a key hereditary technological parameter that determines the structural-phase state and the increased level of mechanical properties of PM HIP compacts compared to the product obtained using traditional technology.

About the Author

A. V. Shulga
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Leyens Ch., Peters M. (Eds.) Titanium and Titanium Alloys. Fundamentals and Applications. 2003. Weinheim: Wiley-Vch Verlag.

2. Guo R.P., Xu L., Wu J., Yang R., Zong B.Y. // Sci. Eng. A. 2015. V. 639. P. 327. https://doi.org/10.1007/s11837-019-03612-7

3. Shulga A.V. An Investigation of the Microstructure and Mechanical Properties of the PM HIP Compacts of the High Temperature Ti-Based Alloy Fabricated Using the Rapidly Quenched Powder Produced by PREPTechnique. Proc. Euro PM 2020: European Conference on Powder Metallurgy. 2020.

4. Guo R., Xu L., Zong B.Y., Yang R. // Acta Metall. Sin. (Engl. Lett.). 2017. V. 30 (8). P. 735.

5. Zhang K., Mein J., Wai N., Wu X. // Metall. Mater. Trans. A. 2010. V. 41. P. 1033.

6. Lu S.L., Todaro C.J., Sun Y.Y., Song T., Brandt M., Qian M. // J. Mater. Sci. Technol. 2022. V. 113 (20). P. 14–21. https://doi.org/10.1016/j.jmst.2021.10.021

7. Ng C.H., Bermingham M.J., Yuan L., Dargusch M.S. // Acta Mater. 2021. V. 224. P. 117511. https://doi.org/10.1016/j.actamat.2021.117511

8. Oak J., Inoue A. // Mater. Sci. Eng. A. 2007. V. 449451. P. 220–224. https://doi.org/10.1016/j.msea.2006.02.307

9. Amherd A., Frykholm H. R., Ebel T., Pyczak F. // Adv. Eng. Mater. 2017. V. 19 (6). P. 1600743. https://doi.org/10.1002/adem.201600743

10. Paramore J.D., Fang Z.Z., Sun P., Koopman M., Chandran K.S.R., Dunstan M. // Scr. Mater. 2015. V. 107. P. 103–106. https://doi.org/10.1016/j.scriptamat.2015.05.032

11. Liu L.H., Yang C., Kang L.M., Long Y., Xiao Z.Y., Li P.J., Zhang L.C. // Mater. Sci. Eng. A. 2016. V. 650. P. 171.

12. Sun P., Fang Z., Zhang Y., Xia Y. // // J. Minerals Met. Mater. Soc. 2017. V. 69. P. 1853. https://doi.org/10.1007/s11837-017-2513-5

13. Lupis C.H.P. Chemical Thermodynamics of Materials. 1983. New York: North-Holland.

14. Mittemeijer E.J., Slycke J.T. // Surf. Engin. 1996. V. 12 (2). P. 152. https://doi.org/10.1179/sur.1996.12.2.152

15. O’Kelly P., Watson A., Schmidt G., Galetz M., Knowles A.J. // J. Phase Equilib. Diffus. 2023. V. 44. P. 738–750. https://doi.org/10.1007/s11669-023-01066-8

16. Wakelkamp W. J. J., van Loo F. J. J., Metselaar R. // J. Eur. Ceram. Soc. 1991. V. 8 (3). P. 135–139. https://doi.org/10.1016/0955-2219(91)90067-A

17. Kelkar K., Mitchell A. // MATEC Web Conf. 2020. V. 321. P. 10001. https://doi.org/10.1051/matecconf/202032110001

18. Shulga A.V. // J. Nucl. Mater. 2013. V. 434. P. 133–140. https://doi.org/10.1016/j.jnucmat.2012.11.008

19. Shulga A.V. // Proc. World PM2022 Congr. and Exhib. 9–13 Oct., 2022. Lyon, France. High Temperature Applications. P. 1–6.

20. Шульга А.В. // Ядерная физика и инжиниринг. 2024. Т. 15 (2). С. 116–132. [Shulga A.V. // Phys. At. Nucl. 2023. V. 86 (9). P. 1998–2012. https://doi.org/10.1134/s1063778823090235]. https://doi.org/10.56304/S2079562923010268


Review

For citations:


Shulga A.V. COMPARATIVE STUDY OF THE STRUCTURE AND MECHANICAL PROPERTIES OF PM HIP COMPACTS MANUFACTURED USING RAPIDLY QUENCHED PREP POWDER AND A PRODUCT MADE USING TRADITIONAL TECHNOLOGY FROM A HEAT-RESISTANT TITANIUM-BASED ALLOY. Nuclear Physics and Engineering. 2025;16(2):146-159. (In Russ.) https://doi.org/10.56304/S2079562924060393. EDN: YUHZIN

Views: 52


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)