Preview

Nuclear Physics and Engineering

Advanced search

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF W–10CR–0.5Y ALLOY UNDER HEAVY ION IRRADIATION

https://doi.org/10.56304/S2079562924050336

EDN: QWXNZS

Abstract

Simulation experiments on radiation resistance of a promising material for fusion reactor, the W–10Cr–0.5Y alloy, were carried out in the work. The alloy samples were irradiated with Fe2+ ions with energy of 5.6 MeV at 500°C to damage doses of 1 and 10 dpa. Transmission electron microscopy and atom probe tomography have shown that as a result of irradiation, a solid solution decomposition with the formation of nanoscale clusters enriched in chromium. The concentration of Cr in clusters is 52 ± 2 and 77 ± 3 at % for radiation doses of 1 and 10 dpa, respectively. The size of the formed clusters is less than 2 nm, and the number density is ~5 ⋅ 1024 m–3.

About the Authors

A. A. Nikitin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


S. V. Rogozhkin
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


O. V. Ogorodnikova
National Research Centre “Kurchatov Institute”; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


A. A. Bogachev
National Research Centre “Kurchatov Institute”
Russian Federation


P. A. Fedin
National Research Centre “Kurchatov Institute”
Russian Federation


T. V. Kulevoy
National Research Centre “Kurchatov Institute”
Russian Federation


References

1. Wittlich K. et al. // Fusion Eng. Des. 2009. V. 84. P. 1982.

2. Hirai T. et al. // J. Nucl. Mater. 2009. V. 390–391. P. 751.

3. Zinkle S.J., Snead L.L. // Ann. Rev. Mater. Res. 2014. V. 44 (1). P. 241–267.

4. Zinkle S.J., Busby J.T. // Mater. Today. 2009. V. 12. P. 12–19.

5. Sato S, Nishitani T. // J. Nucl. Mater. 2003. V. 313–316. P. 690–695.

6. Rebut P.-H. // Fusion Eng. Des. 1995. V. 30 (1–2). P. 85–118.

7. Bachmann C., Arbeiter F., Boccaccini L.V., Coleman M., Federici G., Fischer U., Kemp R., Maviglia F., Mazzone G., Pereslavtsev P., Roccella R., Taylor N., Villari R., Villone F., Wenninger R., You J.-H. // Fusion Eng. Des. 2016. V. 112. P. 527–534.

8. Klein F., Gilbert M.R., Litnovsky A., Gonzalez-Julian J., Weckauf S., Wegener T., Schmitz J., Linsmeier Ch., Bram M., Coenen J.W. // Fusion Eng. Des. 2020. V. 158. P. 111667.

9. Calvo A., García-Rosales C., Ordás N., Iturriza I., Schlueter K., Koch F., Pintsuk G., Tejado E., Pastor J.Y. // Fusion Eng. Des. 2017. V. 124. P. 1118–1121.

10. Sal E. et al. // Nucl. Mater. Energy. 2020. V. 24. P. 100770. https://doi.org/10.1016/j.nme.2020.100770

11. Sal E., García-Rosales C., Iturriza I., Andueza I., Burgos N. // Fusion Eng. Des. 2019. V. 146 (B). P. 1596–1599.

12. Федин П.А., Прянишников К.Е., Зиятдинова А.В., Козлов А.В.,Куйбида Р.П., Кулевой Т.В., Бобырь Н.П., Абин Д.А., Руднев И.А., Никитин А.А., Рогожкин С.В. // Ядерная физика и инжиниринг. 2023. Т. 14 (5). С. 498–503. [Fedin P.A., Pryanishnikov K.E., Ziyatdinova A.V., Kozlov A.V., Kuybida R.P., Kulevoy T.V., Bobyr N.P., Abin D.A., Rudnev I.A., Nikitin A.A., Rogozhkin S.V. // Phys. At. Nucl. 2022. V. 85. Suppl. 2. P. S50–S54].

13. Stoller R., Toloczko M., Was G., Certain A., Dwaraknath S., Garner F. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2013. V. 310. P. 75.

14. Kinchin G.H., Pease R.S. // Rep. Prog. Phys. 1955. V. 18 (1). P. 1–51.

15. Rogozhkin S.V., Lukyanchuk A.A., Raznitsyn O.A., Shutov A.S., Nikitin A.A., Khomich A.A., Iskandarov N.A. // J. Surf. Investig. 2018. V. 12. P. 452–459.

16. Aleev A.A., Rogozhkin S.V., Lukyanchuk A.A., Shutov A.S., Raznitsyn O.A., Nikitin A.A., Iskandarov N.A., Korchuganova O.A., Kirillov S.E. Certificate of State Registration of a Computer Program № 2018661876 (September 20, 2018).

17. Шутов А.С., Лукьянчук А.А., Рогожкин С.В. и др. // Ядерная физика и инжиниринг. 2018. Т. 9 (4). С. 372–382. [Shutov A.S., Lukyanchuk A.A., Rogozhkin S.V., et al. // Phys. At. Nucl. 2019. V. 82. P. 1292–1301].

18. Maslenikov I., Useinov A., Birykov A., Reshetov V. // IOP Conf. Ser.: Mater. Sci. Eng. 2017. V. 256. P. 012003.

19. Oliver W.C., Pharr G.M. // J. Mater. Res. 2004. V. 19 (1). P. 3–20.

20. Li X., Bhushan Bh. // Mater. Character. 2002. V. 48 (1). P. 11–36.

21. Fukuda M., Hasegawa A., Tanno T., Nogami Sh., Kurishita H. // J. Nucl. Mater. 2013. V. 442 (1–3). Suppl. 1. P. S273–S276.

22. El-Atwani O. et al. // Sci. Adv. 2019. V. 5 (3). P. aav2002. https://doi.org/10.1126/sciadv.aav2002

23. Dürrschnabel M., Klimenkov M., Jäntsch U., Terentiev D. // Sci. Rep. 2021. V. 11. P. 7572.

24. Jenkins M.L. // J. Nucl. Mater. 1994. V. 216. P. 124–156.

25. El-Atwani O., Esquivel E., Efe M., Aydogan E., Wang Y.Q., Martinez E., Maloy S.A. // Acta Mater. 2018. V. 149. P. 206–219.

26. Yi X., Jenkins M.L., Kirk M.A., Zhou Z., Roberts S.G. // Acta Mater. 2016. V. 112. P. 105–120.

27. Parish C.M., Field K.G., Certain A.G. et al. // J. Mater. Res. 2015. V. 30. P. 1275–1289.

28. Phillips P.J., Brandes M.C., Mills M.J., de Graef M. // Ultramicroscopy. 2011. V. 111 (9–10). P. 1483–1487. https://doi.org/10.1016/j.ultramic.2011.07.001

29. Yao B., Edwards D.J., Kurtz R.J. // J. Nucl. Mater. 2013. V. 434 (1–3). P. 402–410. https://doi.org/10.1016/j.jnucmat.2012.12.002

30. Jägle E., Choi P., Raabe D. // Microscopy Microanalysis. 2014. V. 20 (6). P. 1662–1671. https://doi.org/10.1017/S1431927614013294

31. Milman Yu.V., Golubenko A.A., Dub S.N. // Acta Mater. 2011. V. 59 (20). P. 7480–7487. https://doi.org/10.1016/j.actamat.2011.08.027

32. Chen J., Bull S.J. // Surf. Coat. Tech. 2006. V. 201 (7). P. 4289–4293. https://doi.org/10.1016/j.surfcoat.2006.08.099

33. Nix W.D., Gao H. // J. Mech. Phys. Solids. 1998. V. 46. P. 411–425.

34. Lucas G.E. // J. Nucl. Mater. 1993. V. 206. P. 287–305.

35. Busby J.T., Hash M.C., Was G.S. // J. Nucl. Mater. 2005. V. 336. P. 267–278.

36. Miyazawa T., Nagasaka T., Kasada R., Hishinuma Y., Muroga T., Watanabe H., Yamamoto T., Nogami S., Hatakeyama M. // J. Nucl. Mater. 2014. V. 455. P. 440444. https://doi.org/10.1016/j.jnucmat.2014.07.059

37. Calvo A., Schlueter K., Tejado E., Pintsuk G., Ordás N., Iturriza I., Neu R., Pastor J.Y., García-Rosales C. // Int. J. Refract. Met. Hard Mater. 2018. V. 73. P. 29–37.

38. Singh B.N., Foreman A.J.E., Trinkaus H. // J. Nucl. Mater. 1997. V. 249 (2–3). P. 103–115.


Review

For citations:


Nikitin A.A., Rogozhkin S.V., Ogorodnikova O.V., Bogachev A.A., Fedin P.A., Kulevoy T.V. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF W–10CR–0.5Y ALLOY UNDER HEAVY ION IRRADIATION. Nuclear Physics and Engineering. 2025;16(2):135-145. (In Russ.) https://doi.org/10.56304/S2079562924050336. EDN: QWXNZS

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)