Preview

Nuclear Physics and Engineering

Advanced search

METHOD FOR THE CALCULATION OF THE SPATIAL RESOLUTION OF THE HEAVY ION BEAM PROBE FOR THE T-15MD TOKAMAK

https://doi.org/10.56304/S2079562924060034

EDN: OTZUEN

Abstract

Heavy ion beam probe is a unique diagnostic technique that allows the independent and simultaneous measurement of the plasma electric potential φ, its fluctuations φ˜, as well as fluctuations of the electron density n˜e and the poloidal magnetic field B˜pol, in the hot plasma region. A method for the calculation of the spatial resolution of the heavy ion beam probe diagnostic for the T-15MD tokamak has been presented. The dependence of the size of the measurement region on the width of the input slits in the energy analyzer has been studied.

About the Authors

Ya. M. Ammosov
National Research Centre “Kurchatov Institute”
Russian Federation


O. D. Krokhalev
National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)
Russian Federation


L. G. Eliseev
National Research Centre “Kurchatov Institute”
Russian Federation


G. A. Sarancha
National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University)
Russian Federation


A. V. Melnikov
National Research Centre “Kurchatov Institute”; Moscow Institute of Physics and Technology (National Research University); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation


References

1. Melnikov A.V. Electric Potential in Toroidal Plasmas. 2019. Cham: Springer Int. Publ.

2. Donné A.J.H. et al. // Czech. J. Phys. 2002. V. 52 (10). P. 1077–1096. https://doi.org/10.1023/A:1021024005348

3. Melnikov A.V. et al. // Nucl. Fusion. 2017. V. 57 (7). P. 072004. https://doi.org/10.1088/1741-4326/aa5382

4. Razumova K.A., Andreev V.F., Eliseev L.G. et al. // Nucl. Fusion. 2011. V. 51 (8). P. 083024. https://doi.org/10.1088/0029-5515/51/8/083024

5. Conway G.D. // Plasma Phys. Control. Fusion. 2008. V. 50 (12). P. 124026. https://doi.org/10.1088/0741-3335/50/12/124026

6. Melnikov A.V. // Nature Phys. 2016. V. 12. P. 386–390. https://doi.org/10.1038/nphys3759

7. Melnikov A.V. et al. // Fusion Eng. Des. 2019. V. 146A. P. 850–853. https://doi.org/10.1016/j.fusengdes.2019.01.096

8. Melnikov A.V. et al. // Plasma Phys. Control. Fusion 2006. V. 48 (4). P. S87–S110. https://doi.org/10.1088/0741-3335/48/4/S07

9. Melnikov A.V. et al. // Nucl. Fusion. 2017. V. 57 (11). P. 115001. https://doi.org/10.1088/1741-4326/aa796c

10. Vershkov V.A. et al. // Nucl. Fusion. 2019. V. 59 (6). P. 066021. https://doi.org/10.1088/1741-4326/ab15b1

11. Аммосов Я.М., Хабанов Ф.О., Драбинский М.А., Мельников А.В., Елисеев Л.Г., Харчев Н.К., Лысенко С.Е. // Ядерная физика и инжиниринг. 2023. Т. 14 (3). С. 278–283. [Ammosov Y.M., Khabanov P.O., Drabinskiy M.A., Melnikov A. V., Eliseev L.G., Kharchev N.K., Lysenko S.E. // Phys. At. Nucl. 2022. V. 85 (12). P. 20712075. https://doi.org/10.1134/s1063778822100040]. https://doi.org/10.56304/S2079562922050049

12. Drabinskiy M.A., Eliseev L.G., Khabanov P.O., Melnikov A.V., Kharchev N.K., Sergeev N.S., Grashin S.A. // J. Phys.: Conf. Ser. 2019. V. 1383 (1). P. 012004. https://doi.org/10.1088/1742-6596/1383/1/012004

13. Fujisawa A. et al. // Nucl. Fusion. 2007. V. 47 (10). P. S718–S726. https://doi.org/10.1088/0029-5515/47/10/S19

14. Sarancha G.A., Eliseev L.G., Khabanov P.O., Kharchev N.K., Melnikov A.V. // JETP Lett. 2022. V. 116 (2). P. 98–104. https://doi.org/10.1134/S0021364022601178

15. Melnikov A.V. et al. // Nucl. Fusion. 2016. V. 56 (11). P. 112019. https://doi.org/10.1088/0029-5515/56/11/112019

16. Cappa Á. et al. // Nucl. Fusion. 2021. V. 61 (6). P. 066019. https://doi.org/10.1088/1741-4326/abf74b

17. Melnikov A. V. et al. // Plasma Phys. Control. Fusion. 2022. V. 64 (5). P. 054009. https://doi.org/10.1088/1361-6587/ac5b4c

18. Аммосов Я.М., Хабанов Ф.О., Драбинский М.А., Мельников А.В., Елисеев Л.Г., Харчев Н.К., Лысенко С.Е., Цывкунова Е.А. // Ядерная физика и инжиниринг. 2024. Т. 15 (1). С. 80–89. [Ammosov Y.M., Khabanov F.O., Drabinskiy M.A., Melnikov A. V., Eliseev L.G., Kharchev N.K., Lysenko S.E., Tsyvkunova E.A. // Phys. At. Nucl. 2023. V. 86 (9). P. 2115–2123. https://doi.org/10.1134/S106377882309003X]. https://doi.org/10.56304/S2079562923010037

19. Ammosov Y.M., Khabanov F.O., Drabinskiy M.A., Melnikov A.V., Eliseev L.G., Kharchev N.K., Lysenko S.E. // Plasma Phys. Reports. 2023. V. 49. (10). P. 1145–1150. https://doi.org/10.1134/S1063780X23601050

20. Melnikov A.V. et al. // Fusion Eng. Des. 2015. V. 96–97. P. 306–310. https://doi.org/10.1016/j.fusengdes.2015.06.080

21. Drabinskiy M.A., Melnikov A.V., Khabanov P.O., Eliseev L.G., Kharchev N.K., Ilin A.M., Sarancha G.A., Vadimov N.A. // J. Instrum. 2019. V. 14 (11). P. C11027–C11027. https://doi.org/10.1088/1748-0221/14/11/C11027

22. Ilin A.M., Khabanov P.O., Melnikov A. V. // J. Phys. Conf. Ser. 2019. V. 1383 (1). P. 012006. https://doi.org/10.1088/1742-6596/1383/1/012006

23. Barber C.B., Dobkin D.P., Huhdanpaa H. // ACM Trans. Math. Softw. 1996. V. 22 (4). P. 469–483. https://doi.org/10.1145/235815.235821

24. Хабанов П.О., Мельников А.В., Минаев В.Б., Комаров А.Д. // Вопр. атомн. науки техн. Сер.: Физика плазмы. 2020. Т. 130 (6). С. 195–199 [Khabanov P.O., Melnikov A.V., Minaev V.B., Komarov A.D. // Probl. At. Sci. Technol. Ser.: Plasma Phys. 2020. V. 130 (6). P. 195–199]. https://doi.org/10.46813/2020-130-195


Review

For citations:


Ammosov Ya.M., Krokhalev O.D., Eliseev L.G., Sarancha G.A., Melnikov A.V. METHOD FOR THE CALCULATION OF THE SPATIAL RESOLUTION OF THE HEAVY ION BEAM PROBE FOR THE T-15MD TOKAMAK. Nuclear Physics and Engineering. 2025;16(1):108-115. (In Russ.) https://doi.org/10.56304/S2079562924060034. EDN: OTZUEN

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)