Preview

Nuclear Physics and Engineering

Advanced search

CALCULATION OF THE EMISSION CHARACTERISTICS OF THERMALLY NONEQUILIBRIUM CO2 GAS IN THE RANGE 3200–5400 CM–1 USING THE LINE-BY-LINE AND STATISTICAL NARROW-BAND MODELS

https://doi.org/10.56304/S2079562924060228

EDN: CXNASQ

Abstract

A method for calculating the absorption and emission characteristics of CO2 in the range from 3200 to 5400 cm–1 taking into account the influence of thermal disequilibrium is presented. A series of calculations using line-by-line (LBL) and statistical narrow-band (SNB) models have been performed at various pressures, spectral regions, layer thicknesses, temperatures, and molar fractions of CO2. The obtained technique shows good agreement between the LBL and SNB models and satisfactorily agrees with experimental data when calculating the transmission capacity. In the considered range, the nonequilibrium in rotational temperature hardly affects the radiative characteristics, unlike translational and vibrational temperatures, which significantly affect the nonequilibrium Planck function. The resulting technique can be used for calculations concerning the problem of global warming.

About the Authors

A. M. Molchanov
Moscow Aviation Institute (National Research University)
Russian Federation


D. S. Yanyshev
Moscow Aviation Institute (National Research University)
Russian Federation


L. V. Bykov
Moscow Aviation Institute (National Research University)
Russian Federation


A. S. Kovalenko
Moscow Aviation Institute (National Research University)
Russian Federation


References

1. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Mathematics. 2022. V. 10. P. 2130.

2. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Aerospace. 2023. V. 10. P. 662.

3. Ачасов О.В. и др. Диагностика неравновесных состояний в молекулярных лазерах. 1985. Минск: Наука и техника.

4. Kudryavtsev N.N., Novikov S.S. // Int. J. Heat Mass Transfer. 1982. V. 25. P. 1541–1558.

5. Кудрявцев Н.Н., Новиков С.С. // Теплофизические свойства веществ. 1980. Т. 18 (6). С. 1161–1167.

6. Молчанов А.М., Быков Л.В., Янышев Д.С. // Теплофизика и аэромеханика. 2017. Т. 24 (3). С. 413–434. 7.Modest M.F. Radiative Heat Transfer (2nd Ed.). 2003. Hardbound: Academic.

7. Rothman L.S., Gordon I.E., Hargreaves R.J., et al. J.Quant. Spectrosc. Radiat. Transfer. 2022. V. 277. P.107949.

8. Rothman L.S., Gordon I.E., Barber R.J., Dothe H., Gamache R.R., Goldman A., Perevalov V., Tashkun S.A., Tennyson J. // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 2139–2150.

9. Tashkun S.A., Perevalov V.I., Teffo J-L., Bykov A.D., Lavrentieva N.N. // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 82. P. 165–196.

10. Герцберг Г. Колебательные и вращательные спектры многоатомных молекул. 1949. Москва: Изд-во ин. лит-ры. [Herzberg G. Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules (9th Ed.). 1945. Princeton: D. Van Nostrand Comp.].

11. Goody R., Yung Y. Atmospheric Radiation (2nd. Ed.). 1989. Oxford: Oxford Univ.

12. Malkmus W. // J. Opt. Soc. Am. 1967. V. 57. P. 323–329.

13. Taine J., Soufiani A. // Adv. Heat Transfer. 1999. V. 33. P. 295–414.

14. Ludwig C.B., Malkmus W., Reardon J.E., Thomson J.A.L. Handbook of Infrared Radiation From Combustion Gases. SP-3080. 1973. NASA.

15. Rodgers C.D., Williams A.P. // J. Quant. Spectrosc. Radiat. Transfer. 1974. V. 14. P. 319–323.

16. Riviere Ph., Soufiani A. // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 475–485.

17. Bharadwaj S.P., Modest M.F. // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 103. P. 146–155.

18. Ryzhkov S.V. // Prob. At. Sci. Technol. 2010. No. 4 (7). P. 105–110.

19. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2023. V. 13. P. 5538.

20. Kuzenov V.V., Ryzhkov S.V. // Comput. Therm. Sci. 2021. V. 13. P. 45–56.

21. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2022. V. 12. P. 3610.

22. Kuzenov V.V., Ryzhkov S.V. // Probl. At. Sci. Technol. 2013. No. 1 (83). P. 12–14.

23. Кузенов В.В., Рыжков С.В. // Ядерная физика и инжиниринг. 2019. Т. 10. С. 263–270. [Kuzenov V.V., Ryzhkov S.V. // Phys. At. Nucl. 2019. V. 82. P. 1341–1347].

24. Kuzenov V.V., Ryzhkov S.V. // Probl. At. Sci. Technol. 2013. No. 4 (86). P. 103–107.

25. Кузенов В.В., Рыжков С.В. // Теплофиз. выс. темп. 2021. Т. 59. № 4. С. 492–501. [Kuzenov V.V., Ryzhkov S.V. // High Temp. 2022. V. 60. P. S7].

26. Клименко Г.К., Кузенов В.В., Ляпин А.А., Рыжков С.В. Расчет, моделирование и проектирование генераторов низкотемпературной плазмы. Уч. 2021. Москва: Изд-во МГТУ им. Н.Э. Баумана.

27. Кузнецов В.А. // Теплоэнергетика. 2022. № 9. С. 7888. [Kuznetsov V.A. // Therm. Eng. 2022. V. 69. P. 702710].

28. Клименко В.В., Клименко А.В., Терешин А.Г., Микушина О.В. // Теплоэнергетика. 2022. № 3. С. 5–19. [Klimenko V.V., Klimenko A.V., Tereshin A.G., et al. Therm. Eng. 2022. V. 69. P. 149–162].


Review

For citations:


Molchanov A.M., Yanyshev D.S., Bykov L.V., Kovalenko A.S. CALCULATION OF THE EMISSION CHARACTERISTICS OF THERMALLY NONEQUILIBRIUM CO2 GAS IN THE RANGE 3200–5400 CM–1 USING THE LINE-BY-LINE AND STATISTICAL NARROW-BAND MODELS. Nuclear Physics and Engineering. 2025;16(1):96-107. (In Russ.) https://doi.org/10.56304/S2079562924060228. EDN: CXNASQ

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-5629 (Print)
ISSN 2079-5637 (Online)