FABRICATION OF POLYMER FILMS WITH TIN OXIDE NANOPARTICLES SYNTHESIZED IN A PLASMA DISCHARGE UNDER THE EFFECT OF ULTRASOUND
https://doi.org/10.56304/S2079562924060083
EDN: NDKDYG
Abstract
Samples of tin oxide nanoparticles have been synthesized in a plasma discharge under the effect of ultrasonic cavitation. Using solution technology and then melt compounding technology, samples of polymer composite materials with a homogeneous distribution of nanoparticles have been obtained. A copolymer of ethylene and vinyl acetate has been used as a polymer matrix. Tin oxide nanoparticles in the form of an aqueous suspension synthesized in the plasma discharge under the effect of ultrasound have been studied by dynamic light scattering. It has been shown that the synthesized particles have a distribution peak in the size range of 50–60 nm; ultrasonic treatment shifts the distribution peak to the region of 30–40 nm. The measurement of the electrokinetic potential of the surface of the initial nanoparticles in an aqueous dispersion medium has allowed us to establish that under the effect of ultrasound, tin oxide particles acquire additional active adsorption sites capable of interacting with the functional groups of the polymer matrix. nanoparticles and agglomerates of tin oxide nanoparticles are visible in the scanning electron microscopy images of composite material films. The X-ray phase and X-ray fluorescence analysis has qualitatively confirmed the presence of tin inside the polymer film: peaks related to tin oxide nanoparticles are visible in the spectra.
About the Authors
O. A. ButusovaRussian Federation
N. A. Bulychev
Russian Federation
References
1. Bulychev N.A., Kazaryan M.A., et al // Bull. Lebedev Phys. Inst. 2012. V. 39. P. 214–220.
2. Burkhanov I.S., Chaikov L.L., Bulychev N.A., Kazaryan M.A., Krasovskii V.I. // Bull. Lebedev Phys. Inst. 2014. V. 41. P. 297–304.
3. Bulychev N.A. // Nanosci. Techn.: Int. J. 2021. V. 12 (3). P. 91–97.
4. Bulychev N.A. // Nanosci. Techn.: Int. J. 2022. V. 13 (1). P. 55–65.
5. Toledo-Antonio J.A., Gutiérrez-Baez R., Sebastian P.J., Vázquez A. // J. Solid State Chem. 2003. V. 174 (2). P. 241–248.
6. Patil P.S., Kawar R.K., Seth T., Amalnerkar D.P., Chigare P.S. // Ceram. Int. 2003. V. 29 (7). P. 725–734.
7. Rehman S., Asiri S.M., Khan F.A., Jermy B.R., Khan H., Akhtar S., Qurashi A. // ChemistrySelect. 2019. V. 4 (14). P. 4013–4017.
8. Cao N., Xie X., Zhang Y., Zhao Y., Cao L., Sun L. // J. Ind. Eng. Chem. 2016. V. 34. P. 9–13.
9. Lou X.W., Yuan C., Archer L.A. // Small. 2007. V. 3 (2). P. 261–265.
10. Devi R.K., Muthusankar G., Gopu G., Berchmans L.J. // Colloids Surf. A. 2020. V. 598. P. 124825.
11. Ahmadabad L.E., Kalantari F.S., Liu H., Hasan A., Gamasaee N.A., Edis Z., Attar F., Ale-Ebrahim M., Rouhollah F., Babadaei M.M.N., Sharifi M., Shahpasand K., Akhtari K., Falahati M., Cai Y. // Mat. Sci. Eng. C. 2021. V. 119. P. 111649.
12. Chiu H.C., Yeh C.S. // J. Phys. Chem. C. 2007. V. 111 (20). P. 7256–7259.
13. Булычев Н.А., Михайлов Ю.Г. // РЭНСИТ. 2023. Т. 15 (2). С. 161–168. https://doi.org/10.17725/rensit.2023.15.161
14. Bulychev N.A., Kolesnik S.A. // IOP Conf. Proc. 2022. V. 2231. P. 012012.
15. Bulychev N., Dervaux B., Dirnberger K., Zubov V., Du Prez F.E., Eisenbach C.D. // Macromol. Chem. Phys. 2010. V. 9 (211). P. 971–977.
16. Klassen N., Krivko O., Kedrov V., Shmurak S., Kiselev A., Shmyt’ko I., Kudrenko E., Shekhtman A., Bazhenov A.,Fursova T., Abramov V., Bulychev N., Kisterev E. // IEEE Trans. Nucl. Sci. 2010. V. 57 (3). P. 1377–1381.
17. Кузенов В.В., Рыжков С.В. // Теплофиз. выс. темп. 2021. Т. 59 (4). С. 92–501.
18. Kuzenov V.V., Ryzhkov S.V. // Probl. At. Sci. Technol. 2013. No. 4 (86). P. 103–107.
19. Ryzhkov S.V. // Probl. At. Sci. Technol. 2010. No. 4 (7). P. 105–110.
20. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2023. V. 13. P. 5538.
21. Kuzenov V.V., Ryzhkov S.V. // Comput. Therm. Sci. 2021. V. 13. P. 45–56.
22. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Appl. Sci. 2022. V. 12. P. 3610.
23. Kuzenov V.V., Ryzhkov S.V. // Probl. At. Sci. Technol. 2013. No. 1 (83). P. 12–14.
24. Кузенов В.В., Рыжков С.В. // Ядерная физика и инжиниринг. 2019. Т. 10. С. 263–270.
25. Клименко Г.К., Кузенов В.В., Ляпин А.А., Рыжков С.В. Расчет, моделирование и проектирование генераторов низкотемпературной плазмы. Уч. 2021. Москва: Изд-во МГТУ им. Н.Э. Баумана.
26. Varaksin A.Yu., Ryzhkov S.V. // Mathematics. 2023. V. 11. P. 3293.
27. Kuzenov V.V., Ryzhkov S.V., Varaksin A.Yu. // Mathematics. 2022. V. 10. P. 2130.
28. Ioni Y., Sapkov I., Kirsanova M., Dimiev A.M. // Carbon. 2023. V. 212. P. 118122.
29. Ioni Y., Khamidullin T., Sapkov I., Brysko V., Dimiev A.M. // Carbon Lett. 2024. V. 34. P. 1219–1228; Ibid. Correction. https://doi.org/10.1007/s42823-024-00765-7
Review
For citations:
Butusova O.A., Bulychev N.A. FABRICATION OF POLYMER FILMS WITH TIN OXIDE NANOPARTICLES SYNTHESIZED IN A PLASMA DISCHARGE UNDER THE EFFECT OF ULTRASOUND. Nuclear Physics and Engineering. 2025;16(1):30-37. (In Russ.) https://doi.org/10.56304/S2079562924060083. EDN: NDKDYG