EFFECTS OF THE LAYERED GRAPHITE STRUCTURE AT HIGH FLUENCES OF 30-KEV HELIUM ION IRRADIATION
https://doi.org/10.56304/S2079562924060046
EDN: WOECFF
Abstract
The effect of high-fluence 30 keV helium ion irradiation with the fluence from 1018 to 3 × 1018 cm–2 in the temperature range from room temperature to 600°C on the morphology and surface structure of highly oriented pyrolytic graphite UPV-1T and fine-grained polycrystalline graphite MPG-8 has been studied experimentally. Ion-induced morphological elements complementing those previously established at low irradiation fluences (~1017 cm–2) have been identified. Irradiation of highly oriented pyrolytic graphite at high fluences results in delaminations, which manifest themselves as graphite flakes that are bent, twisted, and have whisker-like structures. Irradiation of fine-grained graphite does not significantly change its microstructure compared to highly oriented pyrolytic graphite.
About the Authors
N. N. AndrianovaRussian Federation
A. M. Borisov
Russian Federation
E. A. Vorobyeva
Russian Federation
M. A. Ovchinnikov
Russian Federation
V. V. Sleptsov
Russian Federation
R. A. Tsyrkov
Russian Federation
References
1. Virgil’ev Yu.S., Kalyagina I.P. // Inorg. Mater. 2004. V. 40. P. S33–S49.
2. Burchell T.D. // MRS Bull. 1997. V. 22. P. 29–35.
3. Burchell T.D., Snead L.L. // J. Nucl. Mater. 2007. V. 371. P. 18–27.
4. Telling R.H. Heggie M.I. // Philos. Mag. 2007. V. 87. P. 4797–4846.
5. Mrozowski S. // Phys. Rev. 1952. V. 85 (4). P. 609–620.
6. Brocklehurst J.E., Kelly B.T. // Carbon. 1993. V. 31. P. 179–183.
7. Arregui-Mena J.-D., Worth R.N., Tunes M.A., Edmondson P.D. // Mater. Des. 2021. V. 204. P. 109673.
8. Tanabe T. // Phys. Scr. 1996. V. 1996. No. T64. P. 7–16.
9. Muto S., Tanabe T. // Philos. Mag. A. 1997. V. 76. P. 679–690.
10. Elman B.S., Dresselhaus M.S., Dresselhaus G., et al. // Phys. Rev. B 1981. V. 24. P. 1027–1034.
11. Niwase K. // Mater. Sci. Eng. A. 2005. V. 400–401. P. 101–104.
12. Heggie M.I., Suarez-Martinez I., Davidson C., Haffenden G. // J. Nucl. Mater. 2011. V. 413. P. 150–155.
13. Johns S., He L., Kane J.J. et al. // Carbon. 2020. V. 159. P. 119–121.
14. Barsoum M.W., Zhao X., Shanazarov S. // Phys. Rev. Mat. 2019. V. 3. P. 013602.
15. Rooney A.P., Li Z., Zhao W., et al. // Nat. Commun. 2018. V. 9. P. 3597.
16. Liu Z., Zheng Q.S., Liu J.Z. // Appl. Phys. Lett. 2010. V. 96. P. 201909.
17. Kuzumaki T., Hayashi T., Ichinose H., et al. // Philos. Mag. A. 1998. V. 77 (6). P. 1461–1469.
18. Hinks J.A., Haigh S.J., Greaves G., et al. // Carbon. 2014. V. 68. P. 273–284.
19. Annis B.K., Pedraza D.F., Withrow S.P. // J. Mater. Res. 1993. V. 8. P. 2587–2599.
20. Liu D., Cherns D., Johns S. et al // Carbon. 2021. V. 173. P. 215–231.
21. Mashkova E.S., Molchanov V.A. Medium-Energy Ion Reflection from Solids. 1985. Amsterdam: North-Holland.
22. Zhao Y., Lv S., Gao J., et al. // J. Nucl. Mater. 2023. V. 577. P. 154308.
23. Ferrari A.C., Robertson J. // Phys. Rev. B. 2000. V. 61. P. 14095.
24. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., et al. // Phys. Chem. Chem. Phys. 2007. V. 9 (11). P. 1276.
25. Niwase K. // Int. J. Spect. 2012. V. 2012. P. 197609.
26. Платонов П.А., Штромбах Я.И., Карпухин В.И., Виргильев Ю.С., Чугунов О.К., Трофимчук Е.И. Действие излучения на графит высокотемпературных газоохлаждаемых реакторов. Атомноводородная энергетика и технология: Сб. статей. 1984. Москва: Энергоатомиздат. Вып. 6. С. 77.
27. Беграмбеков Л.Б., Пунтаков Н.А., Грунин А.В. Тр. XXVI Междунар. конф. “Взаимодействие ионов с поверхностью (ВИП-2023)”. 21–25 авг. 2023, Ярославль. 2023. Москва: НИЯУ МИФИ. Т. 1.
Review
For citations:
Andrianova N.N., Borisov A.M., Vorobyeva E.A., Ovchinnikov M.A., Sleptsov V.V., Tsyrkov R.A. EFFECTS OF THE LAYERED GRAPHITE STRUCTURE AT HIGH FLUENCES OF 30-KEV HELIUM ION IRRADIATION. Nuclear Physics and Engineering. 2025;16(1):19-29. (In Russ.) https://doi.org/10.56304/S2079562924060046. EDN: WOECFF